IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v140y2017ip1p481-487.html
   My bibliography  Save this article

A new version of the Large Temperature Jump method: The thermal response (T–LTJ)

Author

Listed:
  • Tokarev, M.M.
  • Aristov, Yu.I.

Abstract

In this communication, we propose a new version of the Large Temperature Jump (LTJ) method for studying the ad/desorption dynamics on representative pieces of heat exchangers (HEx) used in real adsorption chillers. This method is based on direct measurement of the temperature difference ΔT of a heat carrier at the inlet and outlet of the tested HEx fragment after a fast drop/jump of the inlet temperature. This tightly repeats the procedure used in real HExs for transformation and storage of low temperature heat. For the sake of validation, the measurements were carried out with the same adsorbent (AQSOA FAM-Z02) and HEx as well as under the same conditions already comprehensively studied in [1]. It is demonstrated that the measured ΔT-response allows studying ad/desorption dynamics, extracting the characteristic process time and heat with sufficient accuracy. The new Thermal Large Temperature Jump (T-LTJ) method gives similar information as the G-LTJ version being more simple in realization and close to the common procedure for evaluating dynamic performance of real adsorptive chillers. Moreover, the T-LTJ provides valuable information about the heat flux directly transferred to a heat carrier fluid that is not available from other LTJ versions.

Suggested Citation

  • Tokarev, M.M. & Aristov, Yu.I., 2017. "A new version of the Large Temperature Jump method: The thermal response (T–LTJ)," Energy, Elsevier, vol. 140(P1), pages 481-487.
  • Handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:481-487
    DOI: 10.1016/j.energy.2017.08.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217314688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santamaria, Salvatore & Sapienza, Alessio & Frazzica, Andrea & Freni, Angelo & Girnik, Ilya S. & Aristov, Yuri I., 2014. "Water adsorption dynamics on representative pieces of real adsorbers for adsorptive chillers," Applied Energy, Elsevier, vol. 134(C), pages 11-19.
    2. Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
    3. Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Xia, Z.Z., 2016. "Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures," Applied Energy, Elsevier, vol. 169(C), pages 846-856.
    4. Girnik, Ilya S. & Aristov, Yuri I., 2016. "Dynamic optimization of adsorptive chillers: The “AQSOA™-FAM-Z02 – Water” working pair," Energy, Elsevier, vol. 106(C), pages 13-22.
    5. Sapienza, Alessio & Santamaria, Salvatore & Frazzica, Andrea & Freni, Angelo & Aristov, Yuri I., 2014. "Dynamic study of adsorbers by a new gravimetric version of the Large Temperature Jump method," Applied Energy, Elsevier, vol. 113(C), pages 1244-1251.
    6. Aristov, Yuri I., 2017. "Adsorptive transformation and storage of renewable heat: Review of current trends in adsorption dynamics," Renewable Energy, Elsevier, vol. 110(C), pages 105-114.
    7. Zhao, Y.J. & Wang, R.Z. & Li, T.X. & Nomura, Y., 2016. "Investigation of a 10 kWh sorption heat storage device for effective utilization of low-grade thermal energy," Energy, Elsevier, vol. 113(C), pages 739-747.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tokarev, M.M. & Zlobin, A.A. & Aristov, Yu.I., 2019. "A new version of the large pressure jump (T-LPJ) method for dynamic study of pressure-initiated adsorptive cycles for heat storage and transformation," Energy, Elsevier, vol. 179(C), pages 542-548.
    2. Aristov, Yuri I., 2020. "Dynamics of adsorptive heat conversion systems: Review of basics and recent advances," Energy, Elsevier, vol. 205(C).
    3. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    4. Mohammadzadeh Kowsari, Milad & Niazmand, Hamid & Tokarev, Mikhail Mikhailovich, 2018. "Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation," Applied Energy, Elsevier, vol. 213(C), pages 540-554.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    2. Aristov, Yuri I., 2017. "Adsorptive transformation and storage of renewable heat: Review of current trends in adsorption dynamics," Renewable Energy, Elsevier, vol. 110(C), pages 105-114.
    3. Sapienza, Alessio & Gullì, Giuseppe & Calabrese, Luigi & Palomba, Valeria & Frazzica, Andrea & Brancato, Vincenza & La Rosa, Davide & Vasta, Salvatore & Freni, Angelo & Bonaccorsi, Lucio & Cacciola, G, 2016. "An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers," Applied Energy, Elsevier, vol. 179(C), pages 929-938.
    4. Aristov, Yuri I., 2020. "Dynamics of adsorptive heat conversion systems: Review of basics and recent advances," Energy, Elsevier, vol. 205(C).
    5. Sapienza, Alessio & Palomba, Valeria & Gullì, Giuseppe & Frazzica, Andrea & Vasta, Salvatore, 2017. "A new management strategy based on the reallocation of ads-/desorption times: Experimental operation of a full-scale 3 beds adsorption chiller," Applied Energy, Elsevier, vol. 205(C), pages 1081-1090.
    6. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    7. Aristov, Yu. I., 2022. "Adsorption heat conversion and storage in closed systems: What have we learned over the past decade of this century?," Energy, Elsevier, vol. 239(PB).
    8. An, G.L. & Wang, L.W. & Gao, J. & Wang, R.Z., 2018. "A review on the solid sorption mechanism and kinetic models of metal halide-ammonia working pairs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 783-792.
    9. Sapienza, Alessio & Velte, Andreas & Girnik, Ilya & Frazzica, Andrea & Füldner, Gerrit & Schnabel, Lena & Aristov, Yuri, 2017. "“Water - Silica Siogel” working pair for adsorption chillers: Adsorption equilibrium and dynamics," Renewable Energy, Elsevier, vol. 110(C), pages 40-46.
    10. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Mohammadzadeh Kowsari, Milad & Niazmand, Hamid & Tokarev, Mikhail Mikhailovich, 2018. "Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation," Applied Energy, Elsevier, vol. 213(C), pages 540-554.
    12. Girnik, Ilya S. & Aristov, Yuri I., 2016. "Dynamic optimization of adsorptive chillers: The “AQSOA™-FAM-Z02 – Water” working pair," Energy, Elsevier, vol. 106(C), pages 13-22.
    13. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Grekova, A.D. & Girnik, I.S. & Nikulin, V.V. & Tokarev, M.M. & Gordeeva, L.G. & Aristov, Yu.I., 2016. "New composite sorbents of water and methanol “salt in anodic alumina”: Evaluation for adsorption heat transformation," Energy, Elsevier, vol. 106(C), pages 231-239.
    15. Frazzica, A. & Palomba, V. & Dawoud, B. & Gullì, G. & Brancato, V. & Sapienza, A. & Vasta, S. & Freni, A. & Costa, F. & Restuccia, G., 2016. "Design, realization and testing of an adsorption refrigerator based on activated carbon/ethanol working pair," Applied Energy, Elsevier, vol. 174(C), pages 15-24.
    16. Papakokkinos, Giorgos & Castro, Jesús & López, Joan & Oliva, Assensi, 2019. "A generalized computational model for the simulation of adsorption packed bed reactors – Parametric study of five reactor geometries for cooling applications," Applied Energy, Elsevier, vol. 235(C), pages 409-427.
    17. Palomba, V. & Lombardo, W. & Groβe, A. & Herrmann, R. & Nitsch, B. & Strehlow, A. & Bastian, R. & Sapienza, A. & Frazzica, A., 2020. "Evaluation of in-situ coated porous structures for hybrid heat pumps," Energy, Elsevier, vol. 209(C).
    18. Girnik, Ilya S. & Aristov, Yuri I., 2016. "Dynamics of water vapour adsorption by a monolayer of loose AQSOA™-FAM-Z02 grains: Indication of inseparably coupled heat and mass transfer," Energy, Elsevier, vol. 114(C), pages 767-773.
    19. Solmuş, İsmail & Yamalı, Cemil & Yıldırım, Cihan & Bilen, Kadir, 2015. "Transient behavior of a cylindrical adsorbent bed during the adsorption process," Applied Energy, Elsevier, vol. 142(C), pages 115-124.
    20. Mikhail Tokarev, 2019. "A Double-Bed Adsorptive Heat Transformer for Upgrading Ambient Heat: Design and First Tests," Energies, MDPI, vol. 12(21), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:481-487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.