IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v106y2016icp231-239.html
   My bibliography  Save this article

New composite sorbents of water and methanol “salt in anodic alumina”: Evaluation for adsorption heat transformation

Author

Listed:
  • Grekova, A.D.
  • Girnik, I.S.
  • Nikulin, V.V.
  • Tokarev, M.M.
  • Gordeeva, L.G.
  • Aristov, Yu.I.

Abstract

Development of new adsorbents of water and methanol specialised for AHT (adsorption heat transformation) can essentially advance this emerging low-carbon technology. This paper addresses the synthesis of novel composite sorbents based on an AA (anodic alumina) layer impregnated with hygroscopic salts, and the study of their ability to sorb water and methanol vapours. This work consists of the three parts: (1) synthesis and comparison of AA/Al sandwiches obtained with various electrolytes (sulphuric, oxalic, and phosphoric acids); (2) preparation of salt/AA composites (salt = CaCl2 and LiCl) and study of their sorption equilibrium and dynamics with water and methanol vapours; and (3) evaluation of the new sorbents feasibility for AHT applications. The results obtained show that a) the new AA-based composites could be interesting for making compact AHT units with short working cycles, and b) still more R&D are necessary for further progress towards practical implementation of the new sorbents.

Suggested Citation

  • Grekova, A.D. & Girnik, I.S. & Nikulin, V.V. & Tokarev, M.M. & Gordeeva, L.G. & Aristov, Yu.I., 2016. "New composite sorbents of water and methanol “salt in anodic alumina”: Evaluation for adsorption heat transformation," Energy, Elsevier, vol. 106(C), pages 231-239.
  • Handle: RePEc:eee:energy:v:106:y:2016:i:c:p:231-239
    DOI: 10.1016/j.energy.2016.03.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Okunev, Boris N. & Aristov, Yuri I., 2014. "Making adsorptive chillers faster by a proper choice of adsorption isobar shape: Comparison of optimal and real adsorbents," Energy, Elsevier, vol. 76(C), pages 400-405.
    2. Santamaria, Salvatore & Sapienza, Alessio & Frazzica, Andrea & Freni, Angelo & Girnik, Ilya S. & Aristov, Yuri I., 2014. "Water adsorption dynamics on representative pieces of real adsorbers for adsorptive chillers," Applied Energy, Elsevier, vol. 134(C), pages 11-19.
    3. Aristov, Yuriy I. & Glaznev, Ivan S. & Girnik, Ilya S., 2012. "Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration," Energy, Elsevier, vol. 46(1), pages 484-492.
    4. Gordeeva, Larisa G. & Aristov, Yuriy I., 2011. "Composite sorbent of methanol “LiCl in mesoporous silica gel” for adsorption cooling: Dynamic optimization," Energy, Elsevier, vol. 36(2), pages 1273-1279.
    5. L. G. Gordeeva & Yu. I. Aristov, 2012. "Composites ‘salt inside porous matrix’ for adsorption heat transformation: a current state-of-the-art and new trends," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 7(4), pages 288-302, April.
    6. Zhang, L.Z. & Wang, L., 1999. "Momentum and heat transfer in the adsorbent of a waste-heat adsorption cooling system," Energy, Elsevier, vol. 24(7), pages 605-624.
    7. Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
    8. Zheng, X. & Ge, T.S. & Wang, R.Z., 2014. "Recent progress on desiccant materials for solid desiccant cooling systems," Energy, Elsevier, vol. 74(C), pages 280-294.
    9. Girnik, Ilya S. & Aristov, Yuri I., 2016. "Dynamic optimization of adsorptive chillers: The “AQSOA™-FAM-Z02 – Water” working pair," Energy, Elsevier, vol. 106(C), pages 13-22.
    10. Yong, Li & Sumathy, K., 2002. "Review of mathematical investigation on the closed adsorption heat pump and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 305-338, August.
    11. Lu, Z.S. & Wang, R.Z., 2014. "Study of the new composite adsorbent of salt LiCl/silica gel–methanol used in an innovative adsorption cooling machine driven by low temperature heat source," Renewable Energy, Elsevier, vol. 63(C), pages 445-451.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chumnanwat, Suppanat & Watanabe, Yuto & Taniguchi, Naoko & Higashi, Hidenori & Kodama, Akio & Seto, Takafumi & Otani, Yoshio & Kumita, Mikio, 2020. "Pore structure control of anodized alumina film and sorption properties of water vapor on CaCl2-aluminum composites," Energy, Elsevier, vol. 208(C).
    2. Henninger, Stefan K. & Ernst, Sebastian-Johannes & Gordeeva, Larisa & Bendix, Phillip & Fröhlich, Dominik & Grekova, Alexandra D. & Bonaccorsi, Lucio & Aristov, Yuri & Jaenchen, Jochen, 2017. "New materials for adsorption heat transformation and storage," Renewable Energy, Elsevier, vol. 110(C), pages 59-68.
    3. Korhammer, Kathrin & Neumann, Karsten & Opel, Oliver & Ruck, Wolfgang K.L., 2018. "Thermodynamic and kinetic study of CaCl2-CH3OH adducts for solid sorption refrigeration by TGA/DSC," Applied Energy, Elsevier, vol. 230(C), pages 1255-1278.
    4. Manca Ocvirk & Alenka Ristić & Nataša Zabukovec Logar, 2021. "Synthesis of Mesoporous γ-Alumina Support for Water Composite Sorbents for Low Temperature Sorption Heat Storage," Energies, MDPI, vol. 14(22), pages 1-15, November.
    5. Piotr Boruta & Tomasz Bujok & Łukasz Mika & Karol Sztekler, 2021. "Adsorbents, Working Pairs and Coated Beds for Natural Refrigerants in Adsorption Chillers—State of the Art," Energies, MDPI, vol. 14(15), pages 1-41, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girnik, Ilya S. & Aristov, Yuri I., 2016. "Dynamics of water vapour adsorption by a monolayer of loose AQSOA™-FAM-Z02 grains: Indication of inseparably coupled heat and mass transfer," Energy, Elsevier, vol. 114(C), pages 767-773.
    2. Girnik, Ilya S. & Aristov, Yuri I., 2016. "Dynamic optimization of adsorptive chillers: The “AQSOA™-FAM-Z02 – Water” working pair," Energy, Elsevier, vol. 106(C), pages 13-22.
    3. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    4. Aristov, Yuri I., 2017. "Adsorptive transformation and storage of renewable heat: Review of current trends in adsorption dynamics," Renewable Energy, Elsevier, vol. 110(C), pages 105-114.
    5. Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
    6. Mohammadzadeh Kowsari, Milad & Niazmand, Hamid & Tokarev, Mikhail Mikhailovich, 2018. "Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation," Applied Energy, Elsevier, vol. 213(C), pages 540-554.
    7. Henninger, Stefan K. & Ernst, Sebastian-Johannes & Gordeeva, Larisa & Bendix, Phillip & Fröhlich, Dominik & Grekova, Alexandra D. & Bonaccorsi, Lucio & Aristov, Yuri & Jaenchen, Jochen, 2017. "New materials for adsorption heat transformation and storage," Renewable Energy, Elsevier, vol. 110(C), pages 59-68.
    8. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. AL-Dadah, Raya & Mahmoud, Saad & Elsayed, Eman & Youssef, Peter & Al-Mousawi, Fadhel, 2020. "Metal-organic framework materials for adsorption heat pumps," Energy, Elsevier, vol. 190(C).
    10. Tokarev, M.M. & Aristov, Yu.I., 2017. "A new version of the Large Temperature Jump method: The thermal response (T–LTJ)," Energy, Elsevier, vol. 140(P1), pages 481-487.
    11. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    12. Sharafian, Amir & Bahrami, Majid, 2015. "Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 857-869.
    13. Girnik, I.S. & Grekova, A.D. & Li, T.X. & Wang, R.Z. & Dutta, P. & Srinivasa Murthy, S. & Aristov, Yu.I., 2020. "Composite “LiCl/MWCNT/PVA” for adsorption thermal battery: Dynamics of methanol sorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    14. Zheng, Xu & Wan, Tinghao & Zhang, Yu & Ma, Qianling, 2024. "Experimental investigation of a thermo-responsive composite coated heat exchanger for ultra-low grade heat utilization," Energy, Elsevier, vol. 293(C).
    15. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    16. Hassan, H.Z. & Mohamad, A.A. & Al-Ansary, H.A. & Alyousef, Y.M., 2014. "Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle," Energy, Elsevier, vol. 77(C), pages 852-858.
    17. Gordeeva, Larisa G. & Solovyeva, Marina V. & Aristov, Yuri I., 2016. "NH2-MIL-125 as a promising material for adsorptive heat transformation and storage," Energy, Elsevier, vol. 100(C), pages 18-24.
    18. Frazzica, A. & Palomba, V. & Dawoud, B. & Gullì, G. & Brancato, V. & Sapienza, A. & Vasta, S. & Freni, A. & Costa, F. & Restuccia, G., 2016. "Design, realization and testing of an adsorption refrigerator based on activated carbon/ethanol working pair," Applied Energy, Elsevier, vol. 174(C), pages 15-24.
    19. Brancato, V. & Frazzica, A. & Sapienza, A. & Gordeeva, L. & Freni, A., 2015. "Ethanol adsorption onto carbonaceous and composite adsorbents for adsorptive cooling system," Energy, Elsevier, vol. 84(C), pages 177-185.
    20. An, G.L. & Wang, L.W. & Gao, J. & Wang, R.Z., 2018. "A review on the solid sorption mechanism and kinetic models of metal halide-ammonia working pairs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 783-792.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:106:y:2016:i:c:p:231-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.