IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v133y2014icp197-205.html
   My bibliography  Save this article

Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission

Author

Listed:
  • Man, Yi
  • Yang, Siyu
  • Zhang, Jun
  • Qian, Yu

Abstract

Olefins are one of the most important platform chemicals. Developing coal-to-olefins (CTO) processes is regarded as one of promising alternatives to oil-to-olefins process. However, CTO suffers from high CO2 emission due to the high carbon contents of coal. In China, there is 7×1010m3 coke-oven gas (COG) produced in coke plants annually. However, most of the hydrogen-rich COG is utilized as fuel or discharged directly into the air. Such situation is a waste of precious hydrogen resource and serious economic loss, which causes serious environmental pollution either. This paper proposes a novel co-feed process of COG assist CTO in which CH4 of COG reacts with CO2 in a Dry Methane Reforming unit to reduce emissions, while the Steam Methane Reforming unit produces H2-rich syngas. H2 of COG can adjust the H/C ratio of syngas. The analysis shows that the energy efficiency of the co-feed process increases about 10%, while at the same time, life cycle carbon footprint is reduced by around 85% in comparison to the conventional CTO process. The economic sustainability of the co-feed process will be reached when the carbon tax would be higher than 150 CNY/t CO2.

Suggested Citation

  • Man, Yi & Yang, Siyu & Zhang, Jun & Qian, Yu, 2014. "Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission," Applied Energy, Elsevier, vol. 133(C), pages 197-205.
  • Handle: RePEc:eee:appene:v:133:y:2014:i:c:p:197-205
    DOI: 10.1016/j.apenergy.2014.07.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191400796X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Yunhua & Biddy, Mary J. & Jones, Susanne B. & Elliott, Douglas C. & Schmidt, Andrew J., 2014. "Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading," Applied Energy, Elsevier, vol. 129(C), pages 384-394.
    2. Qian, Yu & Liu, Jingyao & Huang, Zhixian & Kraslawski, Andrzej & Cui, Jian & Huang, Yinlun, 2009. "Conceptual design and system analysis of a poly-generation system for power and olefin production from natural gas," Applied Energy, Elsevier, vol. 86(10), pages 2088-2095, October.
    3. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    4. Zhu Liu & Dabo Guan & Douglas Crawford-Brown & Qiang Zhang & Kebin He & Jianguo Liu, 2013. "A low-carbon road map for China," Nature, Nature, vol. 500(7461), pages 143-145, August.
    5. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
    6. Haro, Pedro & Trippe, Frederik & Stahl, Ralph & Henrich, Edmund, 2013. "Bio-syngas to gasoline and olefins via DME – A comprehensive techno-economic assessment," Applied Energy, Elsevier, vol. 108(C), pages 54-65.
    7. Chung, William & Zhou, Guanghui & Yeung, Iris M.H., 2013. "A study of energy efficiency of transport sector in China from 2003 to 2009," Applied Energy, Elsevier, vol. 112(C), pages 1066-1077.
    8. Xiang, Dong & Qian, Yu & Man, Yi & Yang, Siyu, 2014. "Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process," Applied Energy, Elsevier, vol. 113(C), pages 639-647.
    9. Xie, Kechang & Li, Wenying & Zhao, Wei, 2010. "Coal chemical industry and its sustainable development in China," Energy, Elsevier, vol. 35(11), pages 4349-4355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uribe-Soto, Wilmar & Portha, Jean-François & Commenge, Jean-Marc & Falk, Laurent, 2017. "A review of thermochemical processes and technologies to use steelworks off-gases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 809-823.
    2. Yang, Wenjie & Xu, Youhao & Shu, Xingtian & Wang, Xin & Bai, Xuhui & Zuo, Yanfen & Luo, Yibin & Ouyang, Ying, 2023. "Insights into the effects of zeolite structural confinement on pentene catalytic cracking to light olefins," Applied Energy, Elsevier, vol. 349(C).
    3. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    4. Yang, Jing & Wu, Jingli & He, Tao & Li, Lingyue & Han, Dezhi & Wang, Zhiqi & Wu, Jinhu, 2016. "Energy gases and related carbon emissions in China," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 140-148.
    5. Shin, Sunkyu & Lee, Jeong-Keun & Lee, In-Beum, 2020. "Development and techno-economic study of methanol production from coke-oven gas blended with Linz Donawitz gas," Energy, Elsevier, vol. 200(C).
    6. Yaser Khojasteh Salkuyeh & Thomas A. Adams II, 2015. "Co-Production of Olefins, Fuels, and Electricity from Conventional Pipeline Gas and Shale Gas with Near-Zero CO 2 Emissions. Part II: Economic Performance," Energies, MDPI, vol. 8(5), pages 1-13, April.
    7. Yang, Shiying & Yang, Yucheng & Kankala, Ranjith Kumar & Li, Baoxia, 2018. "Sustainability assessment of synfuels from biomass or coal: An insight on the economic and ecological burdens," Renewable Energy, Elsevier, vol. 118(C), pages 870-878.
    8. Yang, Qingchun & Yang, Qing & Xu, Simin & Zhang, Dawei & Liu, Chengling & Zhou, Huairong, 2021. "Optimal design, exergy and economic analyses of coal-to-ethylene glycol process coupling different shale gas reforming technologies," Energy, Elsevier, vol. 228(C).
    9. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
    10. Chen, Jianjun & Yang, Siyu & Qian, Yu, 2019. "A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production," Energy, Elsevier, vol. 177(C), pages 304-318.
    11. Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
    12. Liu, Shuoshi & Yang, Lu & Chen, Bokun & Yang, Siyu & Qian, Yu, 2021. "Comprehensive energy analysis and integration of coal-based MTO process," Energy, Elsevier, vol. 214(C).
    13. Lee, Junyoung & Kim, Sunghoon & Kim, Yong Tae & Kwak, Geunjae & Kim, Jiyong, 2020. "Full carbon upcycling of landfill gas into methanol by integrating CO2 hydrogenation and methane reforming: Process development and techno-economic analysis," Energy, Elsevier, vol. 199(C).
    14. Yi, Qun & Wu, Guo-sheng & Gong, Min-hui & Huang, Yi & Feng, Jie & Hao, Yan-hong & Li, Wen-ying, 2017. "A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas," Applied Energy, Elsevier, vol. 193(C), pages 149-161.
    15. Zhou, Huairong & Yang, Siyu & Xiao, Honghua & Yang, Qingchun & Qian, Yu & Gao, Li, 2016. "Modeling and techno-economic analysis of shale-to-liquid and coal-to-liquid fuels processes," Energy, Elsevier, vol. 109(C), pages 201-210.
    16. Zhou, Huairong & Li, Hongwei & Duan, Runhao & Yang, Qingchun, 2020. "An integrated scheme of coal-assisted oil shale efficient pyrolysis and high-value conversion of pyrolysis oil," Energy, Elsevier, vol. 196(C).
    17. Wang, Ning & Wen, Zongguo & Liu, Mingqi & Guo, Jie, 2016. "Constructing an energy efficiency benchmarking system for coal production," Applied Energy, Elsevier, vol. 169(C), pages 301-308.
    18. Zhan, Honglei & Zhao, Kun & Xiao, Lizhi, 2015. "Spectral characterization of the key parameters and elements in coal using terahertz spectroscopy," Energy, Elsevier, vol. 93(P1), pages 1140-1145.
    19. Yaser Khojasteh Salkuyeh & Thomas A. Adams II, 2015. "Co-Production of Olefins, Fuels, and Electricity from Conventional Pipeline Gas and Shale Gas with Near-Zero CO 2 Emissions. Part I: Process Development and Technical Performance," Energies, MDPI, vol. 8(5), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    2. Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
    3. Bin Ye & Jingjing Jiang & Lixin Miao & Peng Yang & Ji Li & Bo Shen, 2015. "Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model," Energies, MDPI, vol. 8(11), pages 1-19, November.
    4. Liu, Huan & Guo, Wei & Liu, Shuqin, 2022. "Comparative techno-economic performance analysis of underground coal gasification and surface coal gasification based coal-to-hydrogen process," Energy, Elsevier, vol. 258(C).
    5. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    6. Sharifzadeh, M. & Wang, L. & Shah, N., 2015. "Decarbonisation of olefin processes using biomass pyrolysis oil," Applied Energy, Elsevier, vol. 149(C), pages 404-414.
    7. Xiang, Dong & Qian, Yu & Man, Yi & Yang, Siyu, 2014. "Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process," Applied Energy, Elsevier, vol. 113(C), pages 639-647.
    8. Li, Hong & Zhou, Hao & Liu, Kailong & Gao, Xin & Li, Xingang, 2021. "Retrofit application of traditional petroleum chemical technologies to coal chemical industry for sustainable energy-efficiency production," Energy, Elsevier, vol. 218(C).
    9. Zhou, Huairong & Qian, Yu & Yang, Siyu, 2015. "Energetic/economic penalty of CO2 emissions and application to coal-to-olefins projects in China," Applied Energy, Elsevier, vol. 156(C), pages 344-353.
    10. Huang, Yi & Yi, Qun & Kang, Jing-Xian & Zhang, Ya-Gang & Li, Wen-Ying & Feng, Jie & Xie, Ke-Chang, 2019. "Investigation and optimization analysis on deployment of China coal chemical industry under carbon emission constraints," Applied Energy, Elsevier, vol. 254(C).
    11. Li, Junjie, 2024. "Spatialized carbon-energy-water footprint of emerging coal chemical industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    12. Chen, Jianjun & Yang, Siyu & Qian, Yu, 2019. "A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production," Energy, Elsevier, vol. 177(C), pages 304-318.
    13. Verma, Aman & Kumar, Amit, 2015. "Life cycle assessment of hydrogen production from underground coal gasification," Applied Energy, Elsevier, vol. 147(C), pages 556-568.
    14. Bilgili, Faik & Mugaloglu, Erhan & Koçak, Emrah, 2018. "The impact of oil prices on CO2 emissions in China: A Wavelet coherence approach," MPRA Paper 90170, University Library of Munich, Germany.
    15. Yang, Jing & Wu, Jingli & He, Tao & Li, Lingyue & Han, Dezhi & Wang, Zhiqi & Wu, Jinhu, 2016. "Energy gases and related carbon emissions in China," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 140-148.
    16. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    17. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    18. Bin Ye & Jingjing Jiang & Lixin Miao & Ji Li & Yang Peng, 2015. "Innovative Carbon Allowance Allocation Policy for the Shenzhen Emission Trading Scheme in China," Sustainability, MDPI, vol. 8(1), pages 1-23, December.
    19. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
    20. Zimmer, Tobias & Rudi, Andreas & Müller, Ann-Kathrin & Fröhling, Magnus & Schultmann, Frank, 2017. "Modeling the impact of competing utilization paths on biomass-to-liquid (BtL) supply chains," Applied Energy, Elsevier, vol. 208(C), pages 954-971.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:133:y:2014:i:c:p:197-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.