IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp108-117.html
   My bibliography  Save this article

Integration of thermo-vapor compressors with phenol and ammonia recovery process for coal gasification wastewater treatment system

Author

Listed:
  • Bokun, Chen
  • Yu, Qian
  • Siyu, Yang

Abstract

Current phenol and ammonia treatment process consumes a large amount of hot utilities to recover crude phenol and aqua ammonia, which includes 0.5 MPag steam (2.68 MW), 1.0 MPag steam (10.17 MW), and 2.5 MPag steam (1.97 MW) based on the benchmark treatment capacity of 100 t/h. This paper fixates on the further improvement of energy efficiency by process integration and innovation. A novel integrated process is proposed in this paper to abate utilities consumption. Two scenarios have been analyzed following the Grand Composite Curve. The results show that one of the new integrated processes performs better energy saving efficiency. It requires 53.7% (7.96 MWsteam) less hot utility consumption and 57.5% (6.86 MWcw) less cooling water consumption at the expense of 68.7% (662 kWelec) more electricity use, as suggested in simulation results. The estimated cost savings relevant to the improved process is 1.095 million US$/y, and the emission reduction is 5237 t CO2 e/y.

Suggested Citation

  • Bokun, Chen & Yu, Qian & Siyu, Yang, 2019. "Integration of thermo-vapor compressors with phenol and ammonia recovery process for coal gasification wastewater treatment system," Energy, Elsevier, vol. 166(C), pages 108-117.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:108-117
    DOI: 10.1016/j.energy.2018.10.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218320061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2017. "Development of a novel processing system for efficient sour water stripping," Energy, Elsevier, vol. 125(C), pages 449-458.
    2. Han, D. & He, W.F. & Yue, C. & Pu, W.H., 2017. "Study on desalination of zero-emission system based on mechanical vapor compression," Applied Energy, Elsevier, vol. 185(P2), pages 1490-1496.
    3. Pan, Lingying & Liu, Pei & Ma, Linwei & Li, Zheng, 2012. "A supply chain based assessment of water issues in the coal industry in China," Energy Policy, Elsevier, vol. 48(C), pages 93-102.
    4. Zhou, Huairong & Yang, Siyu & Xiao, Honghua & Yang, Qingchun & Qian, Yu & Gao, Li, 2016. "Modeling and techno-economic analysis of shale-to-liquid and coal-to-liquid fuels processes," Energy, Elsevier, vol. 109(C), pages 201-210.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    2. Zhang, Yueling & Li, Junjie & Yang, Xiaoxiao, 2021. "Comprehensive competitiveness assessment of four coal-to-liquid routes and conventional oil refining route in China," Energy, Elsevier, vol. 235(C).
    3. Bouckaert, Stéphanie & Assoumou, Edi & Selosse, Sandrine & Maïzi, Nadia, 2014. "A prospective analysis of waste heat management at power plants and water conservation issues using a global TIMES model," Energy, Elsevier, vol. 68(C), pages 80-91.
    4. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    5. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    6. Wang, Sicong & Wang, Shifeng, 2017. "Implications of improving energy efficiency for water resources," Energy, Elsevier, vol. 140(P1), pages 922-928.
    7. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
    8. Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
    9. Chu, Chu & Ritter, William & Sun, Xiaohui, 2019. "Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence," Energy Policy, Elsevier, vol. 125(C), pages 487-502.
    10. Gao, Xuerui & Zhao, Yong & Lu, Shibao & Chen, Qianyun & An, Tingli & Han, Xinxueqi & Zhuo, La, 2019. "Impact of coal power production on sustainable water resources management in the coal-fired power energy bases of Northern China," Applied Energy, Elsevier, vol. 250(C), pages 821-833.
    11. Wu, Huijun & Zeng, Xiaoyu & Zhang, Ling & Liu, Xin & Jiang, Songyan & Dong, Zhanfeng & Meng, Xiangrui & Wang, Qianqian, 2023. "Water-energy nexus embedded in coal supply chain of a coal-based city, China," Resources Policy, Elsevier, vol. 85(PA).
    12. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    13. Chen, Bokun & Yang, Siyu & Cao, Qi & Qian, Yu, 2020. "Life cycle economic assessment of coal chemical wastewater treatment facing the ‘Zero liquid discharge’ industrial water policies in China: Discharge or reuse?," Energy Policy, Elsevier, vol. 137(C).
    14. Shao, Ling & Chen, G.Q., 2016. "Renewability assessment of a production system: Based on embodied energy as emergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 380-392.
    15. Zhao, Jinyang & Yu, Yadong & Ren, Hongtao & Makowski, Marek & Granat, Janusz & Nahorski, Zbigniew & Ma, Tieju, 2022. "How the power-to-liquid technology can contribute to reaching carbon neutrality of the China's transportation sector?," Energy, Elsevier, vol. 261(PA).
    16. Yachen Xie & Jiaguo Qi & Rui Zhang & Xiaomiao Jiao & Gabriela Shirkey & Shihua Ren, 2022. "Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry," Energies, MDPI, vol. 15(12), pages 1-24, June.
    17. David L. Olson & Scott R. Swenseth, 2014. "Trade‐offs in Supply Chain System Risk Mitigation," Systems Research and Behavioral Science, Wiley Blackwell, vol. 31(4), pages 565-579, July.
    18. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Xamán, J. & Bassam, A., 2018. "An innovative air saturator for humidification-dehumidification desalination application," Applied Energy, Elsevier, vol. 228(C), pages 789-807.
    19. Haojun Xia & Huimei Zhang & Jiafan Zhang, 2023. "Research on Damage Mechanism and Mechanical Characteristics of Coal Rock under Water Immersion," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    20. Feng, Cuiyang & Tang, Xu & Jin, Yi & Guo, Yuhua & Zhang, Xiaochuan, 2019. "Regional energy-water nexus based on structural path betweenness: A case study of Shanxi Province, China," Energy Policy, Elsevier, vol. 127(C), pages 102-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:108-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.