IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v102y2016icp354-364.html
   My bibliography  Save this article

An experimental evaluation of the methodology proposed for the monitoring and certification of CO2 emissions from heavy-duty vehicles in Europe

Author

Listed:
  • Fontaras, Georgios
  • Grigoratos, Theodoros
  • Savvidis, Dimitrios
  • Anagnostopoulos, Konstantinos
  • Luz, Raphael
  • Rexeis, Martin
  • Hausberger, Stefan

Abstract

The European Commission is preparing a new regulatory initiative for monitoring CO2 emissions and fuel consumption of Heavy-Duty Vehicles in Europe. The new methodology is based on a combination of component testing and computer simulation of the vehicles' fuel consumption. A study was launched aiming to demonstrate that the approach is accurate and representative of the actual performance of vehicles. Experiments were conducted on two trucks, a 40 t Euro VI long haul truck and an 18 t Euro V rigid truck. Measurements were performed both on the chassis dyno and on the road. Simulation software was used for simulating the tests. Its ability to capture vehicle performance and fuel consumption was assessed against the measured data. Simulation results closely matched those of the dyno tests with the final simulated fuel consumption deviating by about ±2–4% compared to the measured value. Over the tests performed on the road, the final fuel consumption laid within a ±3.5% from the measurement. Given the variability of the actual measurement (σ ≥ 2%), it is concluded that a future official vehicle certification scheme can be based on this approach and achieve both high representativeness, compared to the vehicle's actual performance and high vehicle-to-vehicle, accuracy.

Suggested Citation

  • Fontaras, Georgios & Grigoratos, Theodoros & Savvidis, Dimitrios & Anagnostopoulos, Konstantinos & Luz, Raphael & Rexeis, Martin & Hausberger, Stefan, 2016. "An experimental evaluation of the methodology proposed for the monitoring and certification of CO2 emissions from heavy-duty vehicles in Europe," Energy, Elsevier, vol. 102(C), pages 354-364.
  • Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:354-364
    DOI: 10.1016/j.energy.2016.02.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karavalakis, Georgios & Hajbabaei, Maryam & Durbin, Thomas D. & Johnson, Kent C. & Zheng, Zhongqing & Miller, Wayne J., 2013. "The effect of natural gas composition on the regulated emissions, gaseous toxic pollutants, and ultrafine particle number emissions from a refuse hauler vehicle," Energy, Elsevier, vol. 50(C), pages 280-291.
    2. Fontaras, Georgios & Dilara, Panagiota, 2012. "The evolution of European passenger car characteristics 2000–2010 and its effects on real-world CO2 emissions and CO2 reduction policy," Energy Policy, Elsevier, vol. 49(C), pages 719-730.
    3. Askin, Amanda C. & Barter, Garrett E. & West, Todd H. & Manley, Dawn K., 2015. "The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs," Energy Policy, Elsevier, vol. 81(C), pages 1-13.
    4. López, José M & Gómez, Álvaro & Aparicio, Francisco & Javier Sánchez, Fco., 2009. "Comparison of GHG emissions from diesel, biodiesel and natural gas refuse trucks of the City of Madrid," Applied Energy, Elsevier, vol. 86(5), pages 610-615, May.
    5. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Un, Puikei & Zhou, Yu & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, Elsevier, vol. 69(C), pages 247-257.
    6. Whyte, Kieran & Daly, Hannah E. & Ó Gallachóir, Brian P., 2013. "Modelling HGV freight transport energy demand in Ireland and the impacts of the property construction bubble," Energy, Elsevier, vol. 50(C), pages 245-251.
    7. Hajbabaei, Maryam & Karavalakis, Georgios & Johnson, Kent C. & Lee, Linda & Durbin, Thomas D., 2013. "Impact of natural gas fuel composition on criteria, toxic, and particle emissions from transit buses equipped with lean burn and stoichiometric engines," Energy, Elsevier, vol. 62(C), pages 425-434.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dindarloo, Saeid R. & Siami-Irdemoosa, Elnaz, 2016. "Determinants of fuel consumption in mining trucks," Energy, Elsevier, vol. 112(C), pages 232-240.
    2. Reddi Khasim, Shaik & Dhanamjayulu, C., 2021. "Selection parameters and synthesis of multi-input converters for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Tests for Vehicles with Diesel Engines," Energies, MDPI, vol. 14(2), pages 1-30, January.
    4. Aroua, Ayoub & Lhomme, Walter & Redondo-Iglesias, Eduardo & Verbelen, Florian, 2022. "Fuel saving potential of a long haul heavy duty vehicle equipped with an electrical variable transmission," Applied Energy, Elsevier, vol. 307(C).
    5. Ciuffo, B. & Fontaras, G., 2017. "Models and scientific tools for regulatory purposes: The case of CO2 emissions from light duty vehicles in Europe," Energy Policy, Elsevier, vol. 109(C), pages 76-81.
    6. Sebastian Sigle & Robert Hahn, 2023. "Energy Assessment of Different Powertrain Options for Heavy-Duty Vehicles and Energy Implications of Autonomous Driving," Energies, MDPI, vol. 16(18), pages 1-20, September.
    7. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Cycles for Spark Ignition Engines Powered by Biofuels," Energies, MDPI, vol. 14(5), pages 1-33, March.
    8. Wojcieszyk, Michał & Kroyan, Yuri & Kaario, Ossi & Larmi, Martti, 2023. "Prediction of heavy-duty engine performance for renewable fuels based on fuel property characteristics," Energy, Elsevier, vol. 285(C).
    9. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Martinez-Boggio, Santiago, 2022. "Energy assessment of an electrically heated catalyst in a hybrid RCCI truck," Energy, Elsevier, vol. 238(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengfei Duan & Chaokui Qin & Zhiguang Chen, 2019. "Experimental Study of the Influence of Natural Gas Constituents on CO Emission from Chinese Gas Cooker," Energies, MDPI, vol. 12(20), pages 1-16, October.
    2. Barouch Giechaskiel, 2018. "Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    3. Kakaee, Amir-Hasan & Paykani, Amin & Ghajar, Mostafa, 2014. "The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 64-78.
    4. Anderson, Larry G., 2015. "Effects of using renewable fuels on vehicle emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 162-172.
    5. Chen, Zheng & Zhang, Fan & Xu, Boya & Zhang, Quanchang & Liu, Jingping, 2017. "Influence of methane content on a LNG heavy-duty engine with high compression ratio," Energy, Elsevier, vol. 128(C), pages 329-336.
    6. Alrazen, Hayder A. & Abu Talib, A.R. & Adnan, R. & Ahmad, K.A., 2016. "A review of the effect of hydrogen addition on the performance and emissions of the compression – Ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 785-796.
    7. Farzaneh-Gord, Mahmood & Niazmand, Amir & Deymi-Dashtebayaz, Mahdi & Rahbari, Hamid Reza, 2015. "Effects of natural gas compositions on CNG (compressed natural gas) reciprocating compressors performance," Energy, Elsevier, vol. 90(P1), pages 1152-1162.
    8. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    9. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
    10. Kurani, Kenneth S & Miller, Marshall & Sugihara, Claire & Stepnitz, Eli-Alston & Nesbitt, Kevin A, 2023. "Determinants of Medium- and Heavy-Duty Truck Fleet Turnover," Institute of Transportation Studies, Working Paper Series qt20n8n4mb, Institute of Transportation Studies, UC Davis.
    11. Yu, Rujie & Ren, Huanhuan & Liu, Yong & Yu, Biying, 2021. "Gap between on-road and official fuel efficiency of passenger vehicles in China," Energy Policy, Elsevier, vol. 152(C).
    12. Barla, Philippe & Gilbert-Gonthier, Mathieu & Kuelah, Jean-René Tagne, 2014. "The demand for road diesel in Canada," Energy Economics, Elsevier, vol. 43(C), pages 316-322.
    13. Kumar, Ajeet & Vachan Tirkey, Jeevan & Kumar Shukla, Shailendra, 2021. "“Comparative energy and economic analysis of different vegetable oil plants for biodiesel production in India”," Renewable Energy, Elsevier, vol. 169(C), pages 266-282.
    14. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    15. Mulholland, Eamonn & Teter, Jacob & Cazzola, Pierpaolo & McDonald, Zane & Ó Gallachóir, Brian P., 2018. "The long haul towards decarbonising road freight – A global assessment to 2050," Applied Energy, Elsevier, vol. 216(C), pages 678-693.
    16. Zacharof, Nikiforos & Tietge, Uwe & Franco, Vicente & Mock, Peter, 2016. "Type approval and real-world CO2 and NOx emissions from EU light commercial vehicles," Energy Policy, Elsevier, vol. 97(C), pages 540-548.
    17. Kazimierz Lejda & Artur Jaworski & Maksymilian Mądziel & Krzysztof Balawender & Adam Ustrzycki & Danylo Savostin-Kosiak, 2021. "Assessment of Petrol and Natural Gas Vehicle Carbon Oxides Emissions in the Laboratory and On-Road Tests," Energies, MDPI, vol. 14(6), pages 1-19, March.
    18. Duan, Xiongbo & Feng, Lining & Liu, Haibo & Jiang, Pengfei & Chen, Chao & Sun, Zhiqiang, 2023. "Experimental investigation on exhaust emissions of a heavy-duty vehicle powered by a methanol-fuelled spark ignition engine under world Harmonized Transient Cycle and actual on-road driving conditions," Energy, Elsevier, vol. 282(C).
    19. Somorin, Tosin Onabanjo & Di Lorenzo, Giuseppina & Kolios, Athanasios J., 2017. "Life-cycle assessment of self-generated electricity in Nigeria and Jatropha biodiesel as an alternative power fuel," Renewable Energy, Elsevier, vol. 113(C), pages 966-979.
    20. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:102:y:2016:i:c:p:354-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.