IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v40y2012icp204-218.html
   My bibliography  Save this article

Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping

Author

Listed:
  • Dedes, Eleftherios K.
  • Hudson, Dominic A.
  • Turnock, Stephen R.

Abstract

The combination of a prime mover and an energy storage device for reduction of fuel consumption has successfully been used in automotive industry. The shipping industry has utilised this for conventional submarines. The potential of a load levelling strategy through use of a hybrid battery–diesel–electric propulsion system is investigated. The goal is to reduce exhaust gas emissions by reducing fuel oil consumption through consideration of a re-engineered ship propulsion system. This work is based on operational data for a shipping fleet containing all types of bulk carriers. The engine loading and the energy requirements are calculated, and sizing of suitable propulsion and the battery storage system are proposed. The changes in overall emissions are estimated and the potential for fuel savings identified. The efficiency of the system depends on the storage medium type, the availability of energy and the displacement characteristics of the examined vessels. These results for the global fleet indicate that savings depending on storage system, vessel condition and vessel type could be up to 0.32 million tonnes in NOx, 0.07 million tonnes in SOx and 4.1 million tonnes in CO2. These represent a maximum 14% of reduction in dry bulk sector and 1.8% of world's fleet emissions.

Suggested Citation

  • Dedes, Eleftherios K. & Hudson, Dominic A. & Turnock, Stephen R., 2012. "Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping," Energy Policy, Elsevier, vol. 40(C), pages 204-218.
  • Handle: RePEc:eee:enepol:v:40:y:2012:i:c:p:204-218
    DOI: 10.1016/j.enpol.2011.09.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151100735X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.09.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert F Mulligan, 2008. "A Simple Model for Estimating Newbuilding Costs," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(3), pages 310-321, September.
    2. Osborne, Michael J., 2010. "A resolution to the NPV-IRR debate?," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 234-239, May.
    3. Alvarez, Robert & Schlienger, Peter & Weilenmann, Martin, 2010. "Effect of hybrid system battery performance on determining CO2 emissions of hybrid electric vehicles in real-world conditions," Energy Policy, Elsevier, vol. 38(11), pages 6919-6925, November.
    4. Baker, John, 2008. "New technology and possible advances in energy storage," Energy Policy, Elsevier, vol. 36(12), pages 4368-4373, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharul Baggio Roslan & Dimitrios Konovessis & Zhi Yung Tay, 2022. "Sustainable Hybrid Marine Power Systems for Power Management Optimisation: A Review," Energies, MDPI, vol. 15(24), pages 1-23, December.
    2. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Lam, Jasmine Siu Lee, 2015. "Designing a sustainable maritime supply chain: A hybrid QFD–ANP approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 78(C), pages 70-81.
    4. Dedes, Eleftherios K. & Hudson, Dominic A. & Turnock, Stephen R., 2016. "Investigation of Diesel Hybrid systems for fuel oil reduction in slow speed ocean going ships," Energy, Elsevier, vol. 114(C), pages 444-456.
    5. Linda Barelli & Gianni Bidini & Federico Gallorini & Francesco Iantorno & Nicola Pane & Panfilo Andrea Ottaviano & Lorenzo Trombetti, 2018. "Dynamic Modeling of a Hybrid Propulsion System for Tourist Boat," Energies, MDPI, vol. 11(10), pages 1-17, September.
    6. Gaodan Deng & Xinchun Li & Jingxiao Chen, 2021. "Research on Coupling Coordination and the Development of Green Shipping and Economic Growth in China," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    7. Inal, Omer Berkehan & Charpentier, Jean-Frédéric & Deniz, Cengiz, 2022. "Hybrid power and propulsion systems for ships: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Acanfora, Maria & Balsamo, Flavio & Fantauzzi, Maurizio & Lauria, Davide & Proto, Daniela, 2023. "Design of an electrical energy storage system for hybrid diesel electric ship propulsion aimed at load levelling in irregular wave conditions," Applied Energy, Elsevier, vol. 350(C).
    9. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    10. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    12. Miretti, Federico & Misul, Daniela & Gennaro, Giulio & Ferrari, Antonio, 2022. "Hybridizing waterborne transport: Modeling and simulation of low-emissions hybrid waterbuses for the city of Venice," Energy, Elsevier, vol. 244(PB).
    13. Jagdesh Kumar & Aushiq Ali Memon & Lauri Kumpulainen & Kimmo Kauhaniemi & Omid Palizban, 2019. "Design and Analysis of New Harbour Grid Models to Facilitate Multiple Scenarios of Battery Charging and Onshore Supply for Modern Vessels," Energies, MDPI, vol. 12(12), pages 1-18, June.
    14. Hai Lan & Jinfeng Dai & Shuli Wen & Ying-Yi Hong & David C. Yu & Yifei Bai, 2015. "Optimal Tilt Angle of Photovoltaic Arrays and Economic Allocation of Energy Storage System on Large Oil Tanker Ship," Energies, MDPI, vol. 8(10), pages 1-16, October.
    15. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    16. Pang, Bo & Liu, Siyang & Zhu, Haijia & Feng, Yanbiao & Dong, Zuomin, 2024. "Real-time optimal control of an LNG-fueled hybrid electric ship considering battery degradations," Energy, Elsevier, vol. 296(C).
    17. Zhu, Jianyun & Chen, Li, 2023. "A probabilistic multi-objective design method of sail-photovoltaic-hybrid power system for an unmanned ocean surveillance trimaran," Applied Energy, Elsevier, vol. 350(C).
    18. Lai, Kee-hung & Wong, Christina W.Y. & Veus Lun, Y.H. & Cheng, T.C.E., 2013. "Shipping design for compliance and the performance contingencies for shipping firms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 74-83.
    19. Zhu, Jianyun & Chen, Li & Wang, Xuefeng & Yu, Long, 2020. "Bi-level optimal sizing and energy management of hybrid electric propulsion systems," Applied Energy, Elsevier, vol. 260(C).
    20. Diab, Fahd & Lan, Hai & Ali, Salwa, 2016. "Novel comparison study between the hybrid renewable energy systems on land and on ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 452-463.
    21. Sadia Anwar & Muhammad Yousuf Irfan Zia & Muhammad Rashid & Gerardo Zarazua de Rubens & Peter Enevoldsen, 2020. "Towards Ferry Electrification in the Maritime Sector," Energies, MDPI, vol. 13(24), pages 1-22, December.
    22. Jessica Kersey & Natalie D. Popovich & Amol A. Phadke, 2022. "Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping," Nature Energy, Nature, vol. 7(7), pages 664-674, July.
    23. Ye, Xuemin & Wang, Jia & Li, Chunxi, 2016. "Performance and emission reduction potential of renewable energy aided coal-fired power generation systems," Energy, Elsevier, vol. 113(C), pages 966-979.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristian PAUN, 2012. "International Financing Decision: A Managerial Perspective," REVISTA DE MANAGEMENT COMPARAT INTERNATIONAL/REVIEW OF INTERNATIONAL COMPARATIVE MANAGEMENT, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 13(3), pages 411-425, July.
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Raisa Pérez-Vas & Félix Puime Guillén & Joaquín Enríquez-Díaz, 2021. "Valuation of a Company Producing and Trading Seaweed for Human Consumption: Classical Methods vs. Real Options," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    4. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    5. Wade, N.S. & Taylor, P.C. & Lang, P.D. & Jones, P.R., 2010. "Evaluating the benefits of an electrical energy storage system in a future smart grid," Energy Policy, Elsevier, vol. 38(11), pages 7180-7188, November.
    6. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    7. Magni, Carlo Alberto, 2016. "Capital depreciation and the underdetermination of rate of return: A unifying perspective," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 54-79.
    8. Gino Favero & Gherardo Piacitelli, 2024. "Irr and equivalence of cash-flow streams, loans, and portfolios of bonds," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(2), pages 379-399, December.
    9. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    10. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    11. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    12. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    13. Zhou, Zhibin & Benbouzid, Mohamed & Frédéric Charpentier, Jean & Scuiller, Franck & Tang, Tianhao, 2013. "A review of energy storage technologies for marine current energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 390-400.
    14. Rious, Vincent & Perez, Yannick, 2014. "Review of supporting scheme for island powersystem storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 754-765.
    15. Wang, S. & Kim, A.A. & Johnson, E.M., 2017. "Understanding the deterministic and probabilistic business cases for occupant based plug load management strategies in commercial office buildings," Applied Energy, Elsevier, vol. 191(C), pages 398-413.
    16. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    18. Konsta Värri & Sanna Syri, 2019. "The Possible Role of Modular Nuclear Reactors in District Heating: Case Helsinki Region," Energies, MDPI, vol. 12(11), pages 1-24, June.
    19. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:40:y:2012:i:c:p:204-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.