IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i11p6919-6925.html
   My bibliography  Save this article

Effect of hybrid system battery performance on determining CO2 emissions of hybrid electric vehicles in real-world conditions

Author

Listed:
  • Alvarez, Robert
  • Schlienger, Peter
  • Weilenmann, Martin

Abstract

Hybrid electric vehicles (HEVs) can potentially reduce vehicle CO2 emissions by using recuperated kinetic vehicle energy stored as electric energy in a hybrid system battery (HSB). HSB performance affects the individual net HEV CO2 emissions for a given driving pattern, which is considered to be equivalent to unchanged net energy content in the HSB. The present study investigates the influence of HSB performance on the statutory correction procedure used to determine HEV CO2 emissions in Europe based on chassis dynamometer measurements with three identical in-use examples of a full HEV model featuring different mileages. Statutory and real-world driving cycles and full electric vehicle operation modes have been considered. The main observation is that the selected HEVs can only use 67-80% of the charge provided to the HSB, which distorts the outcomes of the statutory correction procedure that does not consider such irreversibility. CO2 emissions corrected according to this procedure underestimate the true net CO2 emissions of one HEV by approximately 13% in real-world urban driving. The correct CO2 emissions are only reproduced when considering the HSB performance in this driving pattern. The statutory procedure for correcting HEV CO2 emissions should, therefore, be adapted.

Suggested Citation

  • Alvarez, Robert & Schlienger, Peter & Weilenmann, Martin, 2010. "Effect of hybrid system battery performance on determining CO2 emissions of hybrid electric vehicles in real-world conditions," Energy Policy, Elsevier, vol. 38(11), pages 6919-6925, November.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:11:p:6919-6925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00537-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fontaras, Georgios & Samaras, Zissis, 2010. "On the way to 130 g CO2/km--Estimating the future characteristics of the average European passenger car," Energy Policy, Elsevier, vol. 38(4), pages 1826-1833, April.
    2. David L. Greene & K.G. Duleep & Walter McManus, 2004. "Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market," Industrial Organization 0410003, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dedes, Eleftherios K. & Hudson, Dominic A. & Turnock, Stephen R., 2012. "Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping," Energy Policy, Elsevier, vol. 40(C), pages 204-218.
    2. Fernandes, P. & Tomás, R. & Ferreira, E. & Bahmankhah, B. & Coelho, M.C., 2021. "Driving aggressiveness in hybrid electric vehicles: Assessing the impact of driving volatility on emission rates," Applied Energy, Elsevier, vol. 284(C).
    3. Wang, Yachao & Wen, Yi & Zhu, Qinggong & Luo, Jiaxin & Yang, Zhengjun & Su, Sheng & Wang, Xin & Hao, Lijun & Tan, Jianwei & Yin, Hang & Ge, Yunshan, 2022. "Real driving energy consumption and CO2 & pollutant emission characteristics of a parallel plug-in hybrid electric vehicle under different propulsion modes," Energy, Elsevier, vol. 244(PB).
    4. Dedes, Eleftherios K. & Hudson, Dominic A. & Turnock, Stephen R., 2016. "Investigation of Diesel Hybrid systems for fuel oil reduction in slow speed ocean going ships," Energy, Elsevier, vol. 114(C), pages 444-456.
    5. Juliet Namukasa & Sheila Namagembe & Faridah Nakayima, 2020. "Fuel Efficiency Vehicle Adoption and Carbon Emissions in a Country Context," International Journal of Global Sustainability, Macrothink Institute, vol. 4(1), pages 1-21, December.
    6. Álvarez, Roberto & Zubelzu, Sergio & Díaz, Guzmán & López, Alberto, 2015. "Analysis of low carbon super credit policy efficiency in European Union greenhouse gas emissions," Energy, Elsevier, vol. 82(C), pages 996-1010.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    2. Jean-Jacques Chanaron & Julius Teske, 2007. "Hybrid vehicles: a temporary step," Post-Print halshs-00207392, HAL.
    3. Vedrenne, Michel & Pérez, Javier & Lumbreras, Julio & Rodríguez, María Encarnación, 2014. "Life cycle assessment as a policy-support tool: The case of taxis in the city of Madrid," Energy Policy, Elsevier, vol. 66(C), pages 185-197.
    4. Jörg Firnkorn & Martin Müller, 2012. "Selling Mobility instead of Cars: New Business Strategies of Automakers and the Impact on Private Vehicle Holding," Business Strategy and the Environment, Wiley Blackwell, vol. 21(4), pages 264-280, May.
    5. Charyung Kim & Hyunwoo Lee & Yongsung Park & Cha-Lee Myung & Simsoo Park, 2016. "Study on the Criteria for the Determination of the Road Load Correlation for Automobiles and an Analysis of Key Factors," Energies, MDPI, vol. 9(8), pages 1-17, July.
    6. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
    7. McManus, Walter, 2007. "Economic analysis of feebates to reduce greenhouse gas emissions from light vehicles for California," MPRA Paper 3461, University Library of Munich, Germany.
    8. Cayla, Jean-Michel & Maizi, Nadia & Marchand, Christophe, 2011. "The role of income in energy consumption behaviour: Evidence from French households data," Energy Policy, Elsevier, vol. 39(12), pages 7874-7883.
    9. Zhuowu Zhang & Emrah Demir & Robert Mason & Carla Cairano-Gilfedder, 2023. "Understanding freight drivers' behavior and the impact on vehicles' fuel consumption and CO2e emissions," Operational Research, Springer, vol. 23(4), pages 1-35, December.
    10. Landry Frank Ineza Havugimana & Bolan Liu & Fanshuo Liu & Junwei Zhang & Ben Li & Peng Wan, 2023. "Review of Artificial Intelligent Algorithms for Engine Performance, Control, and Diagnosis," Energies, MDPI, vol. 16(3), pages 1-25, January.
    11. Julian M. Müller, 2019. "Comparing Technology Acceptance for Autonomous Vehicles, Battery Electric Vehicles, and Car Sharing—A Study across Europe, China, and North America," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    12. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    13. Fontaras, Georgios & Valverde, Víctor & Arcidiacono, Vincenzo & Tsiakmakis, Stefanos & Anagnostopoulos, Konstantinos & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio, 2018. "The development and validation of a vehicle simulator for the introduction of Worldwide Harmonized test protocol in the European light duty vehicle CO2 certification process," Applied Energy, Elsevier, vol. 226(C), pages 784-796.
    14. Ryan Keefe & James P. Griffin & John D. Graham, 2008. "The Benefits and Costs of New Fuels and Engines for Light‐Duty Vehicles in the United States," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1141-1154, October.
    15. Gerlagh, Reyer & van den Bijgaart, Inge & Nijland, Hans & Michielsen, Thomas, 2015. "Fiscal Policy and CO2 Emissions of New Passenger Cars in the EU," Climate Change and Sustainable Development 202239, Fondazione Eni Enrico Mattei (FEEM).
    16. Voltes-Dorta, Augusto & Perdiguero, Jordi & Jiménez, Juan Luis, 2013. "Are car manufacturers on the way to reduce CO2 emissions?: A DEA approach," Energy Economics, Elsevier, vol. 38(C), pages 77-86.
    17. Lee, Yongseung & Kim, Chongman & Shin, Juneseuk, 2016. "A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach," Applied Energy, Elsevier, vol. 184(C), pages 438-449.
    18. Lutsey, Nicholas P., 2008. "Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors," Institute of Transportation Studies, Working Paper Series qt5rd41433, Institute of Transportation Studies, UC Davis.
    19. Wu, Tian & Shang, Zhe & Tian, Xin & Wang, Shouyang, 2016. "How hyperbolic discounting preference affects Chinese consumers’ consumption choice between conventional and electric vehicles," Energy Policy, Elsevier, vol. 97(C), pages 400-413.
    20. Bahamonde-Birke, Francisco J. & Hanappi, Tibor, 2016. "The potential of electromobility in Austria: Evidence from hybrid choice models under the presence of unreported information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 30-41.

    More about this item

    Keywords

    Hybrid electric vehicle CO2 emissions Real-world;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:11:p:6919-6925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.