IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v355y2005i1p46-53.html
   My bibliography  Save this article

Prediction of energy consumption and risk of excess demand in a distribution system

Author

Listed:
  • Thaler, Marko
  • Grabec, Igor
  • Poredoš, Alojz

Abstract

An empirical model for prediction of energy consumption in a distribution system is described. The model resembles a normalized radial basis function neural network whose neurons contain prototype joint data about the consumption process and the environment. A set of prototype patterns of consumption and environmental variables is formed from a record of a multi-component time series by a self-organized process. Prediction of energy consumption is performed by a conditional average estimator based upon known prototype patterns and given future values of environmental variables. Importance of these variables for the prediction is determined by a genetic algorithm. Prediction performance of the model is tested on a one-year-long consumption record of a gas distribution system. Prediction error is determined by the difference between predicted and actually observed consumption. Its value depends on time and amounts to a few percent of the actual consumption. The probability distribution of prediction error is estimated from a properly selected time interval of prediction. This distribution can be used to estimate the risk of energy demand beyond some prescribed value. For an optimization of the distribution process, a cost function that includes operation and control costs of a distribution system as well as penalties related to excess energy demand is proposed. Its minimum corresponds to an economically optimal energy distribution.

Suggested Citation

  • Thaler, Marko & Grabec, Igor & Poredoš, Alojz, 2005. "Prediction of energy consumption and risk of excess demand in a distribution system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 46-53.
  • Handle: RePEc:eee:phsmap:v:355:y:2005:i:1:p:46-53
    DOI: 10.1016/j.physa.2005.02.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105002748
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.02.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    2. Potocnik, Primoz & Thaler, Marko & Govekar, Edvard & Grabec, Igor & Poredos, Alojz, 2007. "Forecasting risks of natural gas consumption in Slovenia," Energy Policy, Elsevier, vol. 35(8), pages 4271-4282, August.
    3. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
    4. Ravnik, J. & Hriberšek, M., 2019. "A method for natural gas forecasting and preliminary allocation based on unique standard natural gas consumption profiles," Energy, Elsevier, vol. 180(C), pages 149-162.
    5. Yu, Weichao & Gong, Jing & Song, Shangfei & Huang, Weihe & Li, Yichen & Zhang, Jie & Hong, Bingyuan & Zhang, Ye & Wen, Kai & Duan, Xu, 2019. "Gas supply reliability analysis of a natural gas pipeline system considering the effects of underground gas storages," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Yu, Weichao & Song, Shangfei & Li, Yichen & Min, Yuan & Huang, Weihe & Wen, Kai & Gong, Jing, 2018. "Gas supply reliability assessment of natural gas transmission pipeline systems," Energy, Elsevier, vol. 162(C), pages 853-870.
    7. Özmen, Ayşe & Yılmaz, Yavuz & Weber, Gerhard-Wilhelm, 2018. "Natural gas consumption forecast with MARS and CMARS models for residential users," Energy Economics, Elsevier, vol. 70(C), pages 357-381.
    8. Ayşe Özmen, 2023. "Sparse regression modeling for short- and long‐term natural gas demand prediction," Annals of Operations Research, Springer, vol. 322(2), pages 921-946, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:355:y:2005:i:1:p:46-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.