IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v156y2021ics0301421521001750.html
   My bibliography  Save this article

The effect of group decisions in heat transitions: An agent-based approach

Author

Listed:
  • Nava-Guerrero, Graciela-del-Carmen
  • Hansen, Helle Hvid
  • Korevaar, Gijsbert
  • Lukszo, Zofia

Abstract

The Netherlands aims at reducing natural gas consumption for heating in the housing sector. Although homeowners are responsible for replacing their heating systems and improving dwelling insulation, they are not always able to make individual decisions. Some projects require group decisions within and between buildings. We use an agent-based modelling and simulation approach to explore how these individual and group decisions would influence natural gas consumption and heating costs in an illustrative neighbourhood, under a set of assumptions. We model individual household preferences over combinations of insulation and heating systems as a lifetime cost calculation with implicit discount rates, and we use quorum constraints to represent group decisions. We model three fiscal policies and a policy to disconnect all dwellings from the natural gas network. Results show that the disconnection policy was the only necessary and sufficient condition to incentivize households to replace their heating systems and that group decisions influenced the alternatives that were chosen. Since results were influenced by group decisions within buildings and by the market discount rate, we recommend further research regarding policies around these topics. Future work can apply our approach to case studies, incorporate new empirical knowledge, and explore group decisions in other contexts.

Suggested Citation

  • Nava-Guerrero, Graciela-del-Carmen & Hansen, Helle Hvid & Korevaar, Gijsbert & Lukszo, Zofia, 2021. "The effect of group decisions in heat transitions: An agent-based approach," Energy Policy, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:enepol:v:156:y:2021:i:c:s0301421521001750
    DOI: 10.1016/j.enpol.2021.112306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521001750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Majcen, Daša & Itard, Laure & Visscher, Henk, 2013. "Actual and theoretical gas consumption in Dutch dwellings: What causes the differences?," Energy Policy, Elsevier, vol. 61(C), pages 460-471.
    2. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    3. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    4. Mittal, Anuj & Krejci, Caroline C. & Dorneich, Michael C., 2019. "An agent-based approach to designing residential renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1008-1020.
    5. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    6. Busch, Jonathan & Roelich, Katy & Bale, Catherine S.E. & Knoeri, Christof, 2017. "Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks," Energy Policy, Elsevier, vol. 100(C), pages 170-180.
    7. Graciela del Carmen Nava Guerrero & Gijsbert Korevaar & Helle Hvid Hansen & Zofia Lukszo, 2019. "Agent-Based Modeling of a Thermal Energy Transition in the Built Environment," Energies, MDPI, vol. 12(5), pages 1-25, March.
    8. Jerry A. Hausman, 1979. "Individual Discount Rates and the Purchase and Utilization of Energy-Using Durables," Bell Journal of Economics, The RAND Corporation, vol. 10(1), pages 33-54, Spring.
    9. Guus ten Broeke & George van Voorn & Arend Ligtenberg, 2016. "Which Sensitivity Analysis Method Should I Use for My Agent-Based Model?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-5.
    10. Klöckner, Christian A. & Nayum, Alim, 2017. "Psychological and structural facilitators and barriers to energy upgrades of the privately owned building stock," Energy, Elsevier, vol. 140(P1), pages 1005-1017.
    11. Mahapatra, Krushna & Gustavsson, Leif, 2009. "Influencing Swedish homeowners to adopt district heating system," Applied Energy, Elsevier, vol. 86(2), pages 144-154, February.
    12. Filippidou, Faidra & Nieboer, Nico & Visscher, Henk, 2017. "Are we moving fast enough? The energy renovation rate of the Dutch non-profit housing using the national energy labelling database," Energy Policy, Elsevier, vol. 109(C), pages 488-498.
    13. Michelsen, Carl Christian & Madlener, Reinhard, 2013. "Motivational factors influencing the homeowners’ decisions between residential heating systems: An empirical analysis for Germany," Energy Policy, Elsevier, vol. 57(C), pages 221-233.
    14. Burlinson, Andrew & Giulietti, Monica & Battisti, Giuliana, 2018. "Technology adoption, consumer inattention and heuristic decision-making: Evidence from a UK district heating scheme," Research Policy, Elsevier, vol. 47(10), pages 1873-1886.
    15. Train, Kenneth, 1985. "Discount rates in consumers' energy-related decisions: A review of the literature," Energy, Elsevier, vol. 10(12), pages 1243-1253.
    16. Snape, J.R. & Boait, P.J. & Rylatt, R.M., 2015. "Will domestic consumers take up the renewable heat incentive? An analysis of the barriers to heat pump adoption using agent-based modelling," Energy Policy, Elsevier, vol. 85(C), pages 32-38.
    17. Faber, Albert & Valente, Marco & Janssen, Peter, 2010. "Exploring domestic micro-cogeneration in the Netherlands: An agent-based demand model for technology diffusion," Energy Policy, Elsevier, vol. 38(6), pages 2763-2775, June.
    18. Maya Sopha, Bertha & Klöckner, Christian A. & Hertwich, Edgar G., 2011. "Exploring policy options for a transition to sustainable heating system diffusion using an agent-based simulation," Energy Policy, Elsevier, vol. 39(5), pages 2722-2729, May.
    19. Judith C. M. Roodenrijs & Dries L. T. Hegger & Heleen L. P. Mees & Peter Driessen, 2020. "Opening up the Black Box of Group Decision-Making on Solar Energy: The Case of Strata Buildings in Amsterdam, the Netherlands," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    20. James G. March, 1978. "Bounded Rationality, Ambiguity, and the Engineering of Choice," Bell Journal of Economics, The RAND Corporation, vol. 9(2), pages 587-608, Autumn.
    21. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    22. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavlović, Boban & Ivezić, Dejan & Živković, Marija, 2022. "Transition pathways of household heating in Serbia: Analysis based on an agent-based model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Nava-Guerrero, Graciela-del-Carmen & Hansen, Helle Hvid & Korevaar, Gijsbert & Lukszo, Zofia, 2022. "An agent-based exploration of the effect of multi-criteria decisions on complex socio-technical heat transitions," Applied Energy, Elsevier, vol. 306(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nava-Guerrero, Graciela-del-Carmen & Hansen, Helle Hvid & Korevaar, Gijsbert & Lukszo, Zofia, 2022. "An agent-based exploration of the effect of multi-criteria decisions on complex socio-technical heat transitions," Applied Energy, Elsevier, vol. 306(PB).
    2. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
    3. Busch, Jonathan & Roelich, Katy & Bale, Catherine S.E. & Knoeri, Christof, 2017. "Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks," Energy Policy, Elsevier, vol. 100(C), pages 170-180.
    4. Birgit A. Henrich & Thomas Hoppe & Devin Diran & Zofia Lukszo, 2021. "The Use of Energy Models in Local Heating Transition Decision Making: Insights from Ten Municipalities in The Netherlands," Energies, MDPI, vol. 14(2), pages 1-23, January.
    5. Andersen, Kristoffer Steen & Wiese, Catharina & Petrovic, Stefan & McKenna, Russell, 2020. "Exploring the role of households’ hurdle rates and demand elasticities in meeting Danish energy-savings target," Energy Policy, Elsevier, vol. 146(C).
    6. Hesselink, Laurens X.W. & Chappin, Emile J.L., 2019. "Adoption of energy efficient technologies by households – Barriers, policies and agent-based modelling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 29-41.
    7. Graciela del Carmen Nava Guerrero & Gijsbert Korevaar & Helle Hvid Hansen & Zofia Lukszo, 2019. "Agent-Based Modeling of a Thermal Energy Transition in the Built Environment," Energies, MDPI, vol. 12(5), pages 1-25, March.
    8. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    9. Sébastien Foudi, 2024. "Are risk attitude, impatience, and impulsivity related to the individual discount rate? Evidence from energy-efficient durable goods," Theory and Decision, Springer, vol. 96(4), pages 627-661, June.
    10. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    11. Wada, Kenichi & Akimoto, Keigo & Sano, Fuminori & Oda, Junichiro & Homma, Takashi, 2012. "Energy efficiency opportunities in the residential sector and their feasibility," Energy, Elsevier, vol. 48(1), pages 5-10.
    12. Houde, Sébastien & Myers, Erica, 2021. "Are consumers attentive to local energy costs? Evidence from the appliance market," Journal of Public Economics, Elsevier, vol. 201(C).
    13. Ward, David O. & Clark, Christopher D. & Jensen, Kimberly L. & Yen, Steven T. & Russell, Clifford S., 2011. "Factors influencing willingness-to-pay for the ENERGY STAR® label," Energy Policy, Elsevier, vol. 39(3), pages 1450-1458, March.
    14. Ruokamo, Enni, 2016. "Household preferences of hybrid home heating systems – A choice experiment application," Energy Policy, Elsevier, vol. 95(C), pages 224-237.
    15. Nicholas Rivers and Leslie Shiell, 2016. "Free-Riding on Energy Efficiency Subsidies: the Case of Natural Gas Furnaces in Canada," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    16. Cayla, Jean-Michel & Maizi, Nadia & Marchand, Christophe, 2011. "The role of income in energy consumption behaviour: Evidence from French households data," Energy Policy, Elsevier, vol. 39(12), pages 7874-7883.
    17. Parry, Ian W.H. & Evans, David & Oates, Wallace E., 2014. "Are energy efficiency standards justified?," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 104-125.
    18. Burlinson, Andrew & Giulietti, Monica & Battisti, Giuliana, 2018. "Technology adoption, consumer inattention and heuristic decision-making: Evidence from a UK district heating scheme," Research Policy, Elsevier, vol. 47(10), pages 1873-1886.
    19. Li, Jia & Just, Richard E., 2018. "Modeling household energy consumption and adoption of energy efficient technology," Energy Economics, Elsevier, vol. 72(C), pages 404-415.
    20. Qiu, Yueming & Colson, Gregory & Wetzstein, Michael E., 2017. "Risk preference and adverse selection for participation in time-of-use electricity pricing programs," Resource and Energy Economics, Elsevier, vol. 47(C), pages 126-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:156:y:2021:i:c:s0301421521001750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.