IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i2p144-154.html
   My bibliography  Save this article

Influencing Swedish homeowners to adopt district heating system

Author

Listed:
  • Mahapatra, Krushna
  • Gustavsson, Leif

Abstract

Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Östersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey.

Suggested Citation

  • Mahapatra, Krushna & Gustavsson, Leif, 2009. "Influencing Swedish homeowners to adopt district heating system," Applied Energy, Elsevier, vol. 86(2), pages 144-154, February.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:2:p:144-154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00074-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dieperink, Carel & Brand, Iemy & Vermeulen, Walter, 2004. "Diffusion of energy-saving innovations in industry and the built environment: Dutch studies as inputs for a more integrated analytical framework," Energy Policy, Elsevier, vol. 32(6), pages 773-784, April.
    2. Mahapatra, Krushna & Gustavsson, Leif, 2008. "An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden," Energy Policy, Elsevier, vol. 36(2), pages 577-590, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henry Muyingo, 2015. "Organizational Challenges in the Adoption of Building Applied Photovoltaics in the Swedish Tenant-Owner Housing Sector," Sustainability, MDPI, vol. 7(4), pages 1-28, March.
    2. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Owners perception on the adoption of building envelope energy efficiency measures in Swedish detached houses," Applied Energy, Elsevier, vol. 87(7), pages 2411-2419, July.
    3. Freyre, Alisa & Klinke, Sandra & Patel, Martin K., 2020. "Carbon tax and energy programs for buildings: Rivals or allies?," Energy Policy, Elsevier, vol. 139(C).
    4. Chen, Qiu, 2021. "District or distributed space heating in rural residential sector? Empirical evidence from a discrete choice experiment in South China," Energy Policy, Elsevier, vol. 148(PA).
    5. Hecher, Maria & Hatzl, Stefanie & Knoeri, Christof & Posch, Alfred, 2017. "The trigger matters: The decision-making process for heating systems in the residential building sector," Energy Policy, Elsevier, vol. 102(C), pages 288-306.
    6. Billerbeck, Anna & Breitschopf, Barbara & Preuß, Sabine & Winkler, Jenny & Ragwitz, Mario & Keles, Dogan, 2024. "Perception of district heating in Europe: A deep dive into influencing factors and the role of regulation," Energy Policy, Elsevier, vol. 184(C).
    7. Möller, Bernd & Lund, Henrik, 2010. "Conversion of individual natural gas to district heating: Geographical studies of supply costs and consequences for the Danish energy system," Applied Energy, Elsevier, vol. 87(6), pages 1846-1857, June.
    8. Ruokamo, Enni, 2016. "Household preferences of hybrid home heating systems – A choice experiment application," Energy Policy, Elsevier, vol. 95(C), pages 224-237.
    9. Li, Pei-Hao & Keppo, Ilkka & Strachan, Neil, 2018. "Incorporating homeowners' preferences of heating technologies in the UK TIMES model," Energy, Elsevier, vol. 148(C), pages 716-727.
    10. Nava-Guerrero, Graciela-del-Carmen & Hansen, Helle Hvid & Korevaar, Gijsbert & Lukszo, Zofia, 2021. "The effect of group decisions in heat transitions: An agent-based approach," Energy Policy, Elsevier, vol. 156(C).
    11. Hyo-Jin Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "The Convenience Benefits of the District Heating System over Individual Heating Systems in Korean Households," Sustainability, MDPI, vol. 9(8), pages 1-12, August.
    12. Forsell, Nicklas & Guerassimoff, Gilles & Athanassiadis, Dimitris & Thivolle-Casat, Alain & Lorne, Daphné & Millet, Guy & Assoumou, Edi, 2013. "Sub-national TIMES model for analyzing future regional use of biomass and biofuels in Sweden and France," Renewable Energy, Elsevier, vol. 60(C), pages 415-426.
    13. Wallin, Are & Zannakis, Mathias & Johansson, Lars-Olof & Molander, Sverker, 2013. "Influence of interventions and internal motivation on Swedish homeowners’ change of on-site sewage systems," Resources, Conservation & Recycling, Elsevier, vol. 76(C), pages 27-40.
    14. Tran, Martino, 2012. "Technology-behavioural modelling of energy innovation diffusion in the UK," Applied Energy, Elsevier, vol. 95(C), pages 1-11.
    15. Karytsas, Spyridon, 2018. "An empirical analysis on awareness and intention adoption of residential ground source heat pump systems in Greece," Energy Policy, Elsevier, vol. 123(C), pages 167-179.
    16. Li, Hailong & Wang, Weilong & Yan, Jinyue & Dahlquist, Erik, 2013. "Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply," Applied Energy, Elsevier, vol. 104(C), pages 178-186.
    17. Alisa Freyre & Stefano Cozza & Matthias Rüetschi & Meinrad Bürer & Marlyne Sahakian & Martin K. Patel, 2021. "How to Improve Effectiveness of Renewable Space Heating Programs by Better Understanding Homeowner—Installer Interactions," Energies, MDPI, vol. 14(15), pages 1-24, July.
    18. Selvakkumaran, Sujeetha & Ahlgren, Erik O., 2019. "Determining the factors of household energy transitions: A multi-domain study," Technology in Society, Elsevier, vol. 57(C), pages 54-75.
    19. Karytsas, Spyridon & Polyzou, Olympia & Karytsas, Constantine, 2019. "Factors affecting willingness to adopt and willingness to pay for a residential hybrid system that provides heating/cooling and domestic hot water," Renewable Energy, Elsevier, vol. 142(C), pages 591-603.
    20. Karytsas, Spyridon & Theodoropoulou, Helen, 2014. "Public awareness and willingness to adopt ground source heat pumps for domestic heating and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 49-57.
    21. Yoon, Taeyeon & Ma, Yongsun & Rhodes, Charles, 2015. "Individual Heating systems vs. District Heating systems: What will consumers pay for convenience?," Energy Policy, Elsevier, vol. 86(C), pages 73-81.
    22. García-Maroto, I. & García-Maraver, A. & Muñoz-Leiva, F. & Zamorano, M., 2015. "Consumer knowledge, information sources used and predisposition towards the adoption of wood pellets in domestic heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 207-215.
    23. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    24. Nava-Guerrero, Graciela-del-Carmen & Hansen, Helle Hvid & Korevaar, Gijsbert & Lukszo, Zofia, 2022. "An agent-based exploration of the effect of multi-criteria decisions on complex socio-technical heat transitions," Applied Energy, Elsevier, vol. 306(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Houda Elmustapha & Thomas Hoppe & Hans Bressers, 2018. "Understanding Stakeholders’ Views and the Influence of the Socio-Cultural Dimension on the Adoption of Solar Energy Technology in Lebanon," Sustainability, MDPI, vol. 10(2), pages 1-17, January.
    2. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Owners perception on the adoption of building envelope energy efficiency measures in Swedish detached houses," Applied Energy, Elsevier, vol. 87(7), pages 2411-2419, July.
    3. Noemi Munkacsi & Krushna Mahapatra, 2019. "Communication and Household Adoption of Heating Products in Hungary," Energies, MDPI, vol. 12(2), pages 1-22, January.
    4. Elisha R. Frederiks & Karen Stenner & Elizabeth V. Hobman, 2015. "The Socio-Demographic and Psychological Predictors of Residential Energy Consumption: A Comprehensive Review," Energies, MDPI, vol. 8(1), pages 1-37, January.
    5. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    6. Jingchao, Zhang & Kotani, Koji & Saijo, Tatsuyoshi, 2018. "Public acceptance of environmentally friendly heating in Beijing: A case of a low temperature air source heat pump," Energy Policy, Elsevier, vol. 117(C), pages 75-85.
    7. Meles, Tensay Hadush & Ryan, Lisa & Mukherjee, Sanghamitra C., 2022. "Heterogeneity in preferences for renewable home heating systems among Irish households," Applied Energy, Elsevier, vol. 307(C).
    8. Christian A. Oberst & Reinhard Madlener, 2015. "Prosumer Preferences Regarding the Adoption of Micro†Generation Technologies: Empirical Evidence for German Homeowners," Working Papers 2015.07, International Network for Economic Research - INFER.
    9. Mahapatra, Krushna & Gustavsson, Leif, 2008. "An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden," Energy Policy, Elsevier, vol. 36(2), pages 577-590, February.
    10. Natália Gava Gastaldo & Graciele Rediske & Paula Donaduzzi Rigo & Carmen Brum Rosa & Leandro Michels & Julio Cezar Mairesse Siluk, 2019. "What is the Profile of the Investor in Household Solar Photovoltaic Energy Systems?," Energies, MDPI, vol. 12(23), pages 1-18, November.
    11. Stefania Troiano & Daniel Vecchiato & Francesco Marangon & Tiziano Tempesta & Federico Nassivera, 2019. "Households’ Preferences for a New ‘Climate-Friendly’ Heating System: Does Contribution to Reducing Greenhouse Gases Matter?," Energies, MDPI, vol. 12(13), pages 1-19, July.
    12. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    13. Sofie Marton & Elin Svensson & Simon Harvey, 2020. "Operability and Technical Implementation Issues Related to Heat Integration Measures—Interview Study at an Oil Refinery in Sweden," Energies, MDPI, vol. 13(13), pages 1-23, July.
    14. Altwies, Joy E. & Nemet, Gregory F., 2013. "Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology," Energy Policy, Elsevier, vol. 52(C), pages 819-831.
    15. Wang, Jianming & Li, Yongqiang & He, Zhengxia & Gao, Jian & Wang, Jianguo, 2022. "Scale framing, benefit framing and their interaction effects on energy-saving behaviors: Evidence from urban residents of China," Energy Policy, Elsevier, vol. 166(C).
    16. Ruokamo, Enni, 2016. "Household preferences of hybrid home heating systems – A choice experiment application," Energy Policy, Elsevier, vol. 95(C), pages 224-237.
    17. Can Wang & Jie Lin & Wenjia Cai & ZhongXiang Zhang, 2013. "Policies and Practices of Low Carbon City Development in China," Energy & Environment, , vol. 24(7-8), pages 1347-1372, December.
    18. Balachandra, P. & Kristle Nathan, Hippu Salk & Reddy, B. Sudhakara, 2010. "Commercialization of sustainable energy technologies," Renewable Energy, Elsevier, vol. 35(8), pages 1842-1851.
    19. Magdalena Grębosz-Krawczyk & Agnieszka Zakrzewska-Bielawska & Beata Glinka & Aldona Glińska-Neweś, 2021. "Why Do Consumers Choose Photovoltaic Panels? Identification of the Factors Influencing Consumers’ Choice Behavior regarding Photovoltaic Panel Installations," Energies, MDPI, vol. 14(9), pages 1-20, May.
    20. Dóci, Gabriella & Vasileiadou, Eleftheria, 2015. "“Let׳s do it ourselves” Individual motivations for investing in renewables at community level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 41-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:2:p:144-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.