Potential impacts of coal substitution policy on regional air pollutants and carbon emission reductions for China's building sector during the 13th Five-Year Plan period
Author
Abstract
Suggested Citation
DOI: 10.1016/j.enpol.2019.04.047
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Han & Chen, Wenying, 2019. "Potential impact of shifting coal to gas and electricity for building sectors in 28 major northern cities of China," Applied Energy, Elsevier, vol. 236(C), pages 1049-1061.
- Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
- Cai, Bofeng & Lu, Jun & Wang, Jinnan & Dong, Huijuan & Liu, Xiaoman & Chen, Yang & Chen, Zhanming & Cong, Jianhui & Cui, Zhipeng & Dai, Chunyan & Fang, Kai & Feng, Tong & Guo, Jie & Li, Fen & Meng, Fa, 2019. "A benchmark city-level carbon dioxide emission inventory for China in 2005," Applied Energy, Elsevier, vol. 233, pages 659-673.
- McNeil, Michael A. & Feng, Wei & de la Rue du Can, Stephane & Khanna, Nina Zheng & Ke, Jing & Zhou, Nan, 2016. "Energy efficiency outlook in China’s urban buildings sector through 2030," Energy Policy, Elsevier, vol. 97(C), pages 532-539.
- Tan, Xianchun & Lai, Haiping & Gu, Baihe & Zeng, Yuan & Li, Hui, 2018. "Carbon emission and abatement potential outlook in China's building sector through 2050," Energy Policy, Elsevier, vol. 118(C), pages 429-439.
- Yang, Tao & Pan, Yiqun & Yang, Yikun & Lin, Meishun & Qin, Bingyue & Xu, Peng & Huang, Zhizhong, 2017. "CO2 emissions in China's building sector through 2050: A scenario analysis based on a bottom-up model," Energy, Elsevier, vol. 128(C), pages 208-223.
- Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
- Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
- Du, Mingxi & Wang, Xiaoge & Peng, Changhui & Shan, Yuli & Chen, Huai & Wang, Meng & Zhu, Qiuan, 2018. "Quantification and scenario analysis of CO2 emissions from the central heating supply system in China from 2006 to 2025," Applied Energy, Elsevier, vol. 225(C), pages 869-875.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Xiuzhi & Liu, Chang & van Oel, Pieter & Mergia Mekonnen, Mesfin & Thorp, Kelly R. & Yin, Tuo & Wang, Jinyan & Muhammad, Tahir & Li, Yunkai, 2022. "Water and carbon risks within hydropower development on national scale," Applied Energy, Elsevier, vol. 325(C).
- Li, Xiaoyu & Zeng, Zhao & Zhang, Zengkai & Yao, Ye & Du, Huibin, 2023. "The rising North-South carbon flows within China from 2012 to 2017," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 263-272.
- Wen, Shiyan & Jia, Zhijie, 2022. "The energy, environment and economy impact of coal resource tax, renewable investment, and total factor productivity growth," Resources Policy, Elsevier, vol. 77(C).
- Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
- Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
- Ma, Dingyuan & Li, Xiaodong & Lin, Borong & Zhu, Yimin, 2023. "An intelligent retrofit decision-making model for building program planning considering tacit knowledge and multiple objectives," Energy, Elsevier, vol. 263(PB).
- Qingye Han & Junjie Chang & Guiwen Liu & Heng Zhang, 2022. "The Carbon Emission Assessment of a Building with Different Prefabrication Rates in the Construction Stage," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
- Peng, Cheng & Chen, Heng & Lin, Chaoran & Guo, Shuang & Yang, Zhi & Chen, Ke, 2021. "A framework for evaluating energy security in China: Empirical analysis of forecasting and assessment based on energy consumption," Energy, Elsevier, vol. 234(C).
- Ju Qiu & Shumei Wang & Meihua Lian, 2023. "Research on the Sustainable Development Path of Regional Economy Based on CO 2 Reduction Policy," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
- Xu, Shuo & Ge, Jianping, 2020. "Sustainable shifting from coal to gas in North China: An analysis of resident satisfaction," Energy Policy, Elsevier, vol. 138(C).
- Qu, Weihua & Qu, Guohua & Zhang, Xindong & Robert, Dixon, 2021. "The impact of public participation in environmental behavior on haze pollution and public health in China," Economic Modelling, Elsevier, vol. 98(C), pages 319-335.
- Chen, Han & Chen, Wenying, 2021. "Status, trend, economic and environmental impacts of household solar photovoltaic development in China: Modelling from subnational perspective," Applied Energy, Elsevier, vol. 303(C).
- Fan, Shengyue & Zha, Shuai & Zhao, Chenxi & Sizheng, Fangyuan & Li, Meihui, 2022. "Using energy vulnerability to measure distributive injustice in rural heating energy reform: A case study of natural gas replacing bulk coal for heating in Gaocheng District, Hebei Province, China," Ecological Economics, Elsevier, vol. 197(C).
- Adela Bâra & Simona-Vasilica Oprea & Niculae Oprea, 2023. "How Fast to Avoid Carbon Emissions: A Holistic View on the RES, Storage and Non-RES Replacement in Romania," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
- Jianhua Huangfu & Wenjuan Zhao & Lei Yu, 2023. "Does Coal Consumption Control Policy Synergistically Control Emissions and Energy Intensity?," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
- Zhang, Yali & Li, Wenqi & Wu, Feng, 2020. "Does energy transition improve air quality? Evidence derived from China’s Winter Clean Heating Pilot (WCHP) project," Energy, Elsevier, vol. 206(C).
- Zheng, Saina & Zhai, Haibo & Hsu, Shu-Chien & Armanios, Daniel Erian, 2024. "Uneven distribution in energy conservation services through performance contracts in China," Energy Policy, Elsevier, vol. 187(C).
- Huo, Tengfei & Du, Qianxi & Xu, Linbo & Shi, Qingwei & Cong, Xiaobo & Cai, Weiguang, 2023. "Timetable and roadmap for achieving carbon peak and carbon neutrality of China's building sector," Energy, Elsevier, vol. 274(C).
- Xiaowan Yang & Xiaoyu Guo & Yanan Wang, 2023. "Characteristics of Carbon Emission Transfer under Carbon Neutrality and Carbon Peaking Background and the Impact of Environmental Policies and Regulations on It," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
- Tao Ge & Jinye Li & Cang Wang, 2023. "Econometric analysis of the impact of innovative city pilots on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9359-9386, September.
- Huang, Zhi-xiong & Yang, Xiandong, 2021. "Carbon emissions and firm innovation," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 503-513.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
- Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
- Huo, Tengfei & Xu, Linbo & Feng, Wei & Cai, Weiguang & Liu, Bingsheng, 2021. "Dynamic scenario simulations of carbon emission peak in China's city-scale urban residential building sector through 2050," Energy Policy, Elsevier, vol. 159(C).
- Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
- Wei Zhou & Alice Moncaster & David M Reiner & Peter Guthrie, 2019.
"Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China,"
Sustainability, MDPI, vol. 11(13), pages 1-18, July.
- Wei Zhou & Alice Moncaster & David M Reiner & Peter Guthrie, 2019. "Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China," Working Papers EPRG1923, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Zhou, W. & Moncaster, A. & Reiner, D. & Guthrie, P., 2019. "Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China," Cambridge Working Papers in Economics 1967, Faculty of Economics, University of Cambridge.
- Li, Rui & Liu, Qiqi & Cai, Weiguang & Liu, Yuan & Yu, Yanhui & Zhang, Yihao, 2023. "Echelon peaking path of China's provincial building carbon emissions: Considering peak and time constraints," Energy, Elsevier, vol. 271(C).
- Yang, Xinyan & Zhang, Shicong & Xu, Wei, 2019. "Impact of zero energy buildings on medium-to-long term building energy consumption in China," Energy Policy, Elsevier, vol. 129(C), pages 574-586.
- Tan, Xianchun & Lai, Haiping & Gu, Baihe & Zeng, Yuan & Li, Hui, 2018. "Carbon emission and abatement potential outlook in China's building sector through 2050," Energy Policy, Elsevier, vol. 118(C), pages 429-439.
- Zhang, Junjie & Yan, Zengfeng & Bi, Wenbei & Ni, Pingan & Lei, Fuming & Yao, Shanshan & Lang, Jiachen, 2023. "Prediction and scenario simulation of the carbon emissions of public buildings in the operation stage based on an energy audit in Xi'an, China," Energy Policy, Elsevier, vol. 173(C).
- Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
- Khanna, Nina & Fridley, David & Zhou, Nan & Karali, Nihan & Zhang, Jingjing & Feng, Wei, 2019. "Energy and CO2 implications of decarbonization strategies for China beyond efficiency: Modeling 2050 maximum renewable resources and accelerated electrification impacts," Applied Energy, Elsevier, vol. 242(C), pages 12-26.
- Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
- Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.
- Yamaguchi, Yohei & Kim, Bumjoon & Kitamura, Takuya & Akizawa, Kotone & Chen, Hemiao & Shimoda, Yoshiyuki, 2022. "Building stock energy modeling considering building system composition and long-term change for climate change mitigation of commercial building stocks," Applied Energy, Elsevier, vol. 306(PA).
- Yang, Jingjing & Deng, Zhang & Guo, Siyue & Chen, Yixing, 2023. "Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings," Applied Energy, Elsevier, vol. 331(C).
- Huo, Tengfei & Xu, Linbo & Liu, Bingsheng & Cai, Weiguang & Feng, Wei, 2022. "China’s commercial building carbon emissions toward 2060: An integrated dynamic emission assessment model," Applied Energy, Elsevier, vol. 325(C).
- Qi Zhang & Ting Xiang & Wei Zhang & Heming Wang & Jing An & Xiuping Li & Bing Xue, 2022. "Co‐benefits analysis of industrial symbiosis in China's key industries: Case of steel, cement, and power industries," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1714-1727, October.
- Xu, Guangyue & Wang, Weimin, 2020. "China’s energy consumption in construction and building sectors: An outlook to 2100," Energy, Elsevier, vol. 195(C).
- Yang, Tao & Pan, Yiqun & Yang, Yikun & Lin, Meishun & Qin, Bingyue & Xu, Peng & Huang, Zhizhong, 2017. "CO2 emissions in China's building sector through 2050: A scenario analysis based on a bottom-up model," Energy, Elsevier, vol. 128(C), pages 208-223.
More about this item
Keywords
Scattered coal; Building sector; Emission reductions; Downscaling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:131:y:2019:i:c:p:281-294. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.