IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp1049-1061.html
   My bibliography  Save this article

Potential impact of shifting coal to gas and electricity for building sectors in 28 major northern cities of China

Author

Listed:
  • Chen, Han
  • Chen, Wenying

Abstract

Building sector accounts for about 30% of total primary energy consumption in Chinese cities, in which the untreated scattered coal is one of the most important sources for local air pollutants such as SO2, NOx, PM2.5 and carbon emissions, posing serious threats on air quality, public health and climate change. This work aims to evaluate the impacts of the coal substitution policy (“coal-to-gas” and “coal-to-electricity”) on building energy demand and emissions for Beijing, Tianjin, and other twenty-six cities along the “air pollution transmission channel”, which has not been fully studied before and could assist city policy makers in coping with this drastic energy transformation by weighing potential social costs and benefits. To this end, a systematic method to downscale building energy consumption from provincial/regional level to grid level (0.1° × 0.1°) is developed using openly available data and information to establish high resolution emission projections of CO2 and major air pollutants (SO2, NOx and PM2.5) for these cities. This framework provides a convenient way to simulate the spatiotemporal dynamics of future emissions by sector for multiple cities. Combined with three coal substitution scenarios designed in this study, some policy suggestions on alternative energy and social welfare improvement were made by investigating city scale effects on energy accessibility, affordability, as well as health and environmental benefits.

Suggested Citation

  • Chen, Han & Chen, Wenying, 2019. "Potential impact of shifting coal to gas and electricity for building sectors in 28 major northern cities of China," Applied Energy, Elsevier, vol. 236(C), pages 1049-1061.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:1049-1061
    DOI: 10.1016/j.apenergy.2018.12.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918318695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.12.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mi, Xuming & Liu, Ran & Cui, Hongzhi & Memon, Shazim Ali & Xing, Feng & Lo, Yiu, 2016. "Energy and economic analysis of building integrated with PCM in different cities of China," Applied Energy, Elsevier, vol. 175(C), pages 324-336.
    2. Karmellos, M. & Kopidou, D. & Diakoulaki, D., 2016. "A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries," Energy, Elsevier, vol. 94(C), pages 680-692.
    3. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    4. Yeo, In-Ae & Yoon, Seong-Hwan & Yee, Jurng-Jae, 2013. "Development of an urban energy demand forecasting system to support environmentally friendly urban planning," Applied Energy, Elsevier, vol. 110(C), pages 304-317.
    5. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    6. Mikkola, Jani & Lund, Peter D., 2014. "Models for generating place and time dependent urban energy demand profiles," Applied Energy, Elsevier, vol. 130(C), pages 256-264.
    7. Tang, Baojun & Li, Ru & Yu, Biying & An, Runying & Wei, Yi-Ming, 2018. "How to peak carbon emissions in China's power sector: A regional perspective," Energy Policy, Elsevier, vol. 120(C), pages 365-381.
    8. Xi, Fengming & Geng, Yong & Chen, Xudong & Zhang, Yunsong & Wang, Xinbei & Xue, Bing & Dong, Huijuan & Liu, Zhu & Ren, Wanxia & Fujita, Tsuyoshi & Zhu, Qinghua, 2011. "Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China," Energy Policy, Elsevier, vol. 39(10), pages 5999-6010, October.
    9. Hammitt James K. & Robinson Lisa A, 2011. "The Income Elasticity of the Value per Statistical Life: Transferring Estimates between High and Low Income Populations," Journal of Benefit-Cost Analysis, De Gruyter, vol. 2(1), pages 1-29, January.
    10. Hammitt James K. & Robinson Lisa A, 2011. "The Income Elasticity of the Value per Statistical Life: Transferring Estimates between High and Low Income Populations," Journal of Benefit-Cost Analysis, De Gruyter, vol. 2(1), pages 1-29, January.
    11. Ted Gayer & W. Viscusi, 2013. "Overriding consumer preferences with energy regulations," Journal of Regulatory Economics, Springer, vol. 43(3), pages 248-264, June.
    12. Xu, Peng & Huang, Joe & Shen, Pengyuan & Ma, Xiaowen & Gao, Xuefei & Xu, Qiaolin & Jiang, Han & Xiang, Yong, 2013. "Commercial building energy use in six cities in Southern China," Energy Policy, Elsevier, vol. 53(C), pages 76-89.
    13. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    14. Yeo, In-Ae & Yoon, Seong-Hwan & Yee, Jurng-Jae, 2013. "Development of an Environment and energy Geographical Information System (E-GIS) construction model to support environmentally friendly urban planning," Applied Energy, Elsevier, vol. 104(C), pages 723-739.
    15. Jin, Yana & Andersson, Henrik & Zhang, Shiqiu, 2017. "China’s Cap on Coal and the Efficiency of Local Interventions: A Benefit-Cost Analysis of Phasing out Coal in Power Plants and in Households in Beijing 1," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 8(2), pages 147-186, July.
    16. Pereira, Iraci Miranda & Assis, Eleonora Sad de, 2013. "Urban energy consumption mapping for energy management," Energy Policy, Elsevier, vol. 59(C), pages 257-269.
    17. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    18. Dong, Liang & Gu, Fumei & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Gao, Jie, 2014. "Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China," Energy Policy, Elsevier, vol. 65(C), pages 388-397.
    19. Tan, Xianchun & Lai, Haiping & Gu, Baihe & Zeng, Yuan & Li, Hui, 2018. "Carbon emission and abatement potential outlook in China's building sector through 2050," Energy Policy, Elsevier, vol. 118(C), pages 429-439.
    20. Li, Xin & Chalvatzis, Konstantinos J. & Pappas, Dimitrios, 2018. "Life cycle greenhouse gas emissions from power generation in China’s provinces in 2020," Applied Energy, Elsevier, vol. 223(C), pages 93-102.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yi & Huang, Jian-Bai & Feng, Chao, 2018. "Decomposition of energy-related CO2 emissions in China's iron and steel industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 59(C), pages 103-116.
    2. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    3. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    4. Wang, Jie & Xiong, Yiling & Tian, Xin & Liu, Shangwei & Li, Jiashuo & Tanikawa, Hiroki, 2018. "Stagnating CO2 emissions with in-depth socioeconomic transition in Beijing," Applied Energy, Elsevier, vol. 228(C), pages 1714-1725.
    5. Yue‐Jun Zhang & Wei Shi & Lin Jiang, 2020. "Does China's carbon emissions trading policy improve the technology innovation of relevant enterprises?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 872-885, March.
    6. Zhang, Yongping & Mi, Zhifu, 2018. "Environmental benefits of bike sharing: A big data-based analysis," Applied Energy, Elsevier, vol. 220(C), pages 296-301.
    7. Shiqing Zhang & Jianwei Wang & Wenlong Zheng, 2018. "Decomposition Analysis of Energy-Related CO 2 Emissions and Decoupling Status in China’s Logistics Industry," Sustainability, MDPI, vol. 10(5), pages 1-21, April.
    8. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    9. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    10. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    11. Liu, Xiaoyu & Duan, Zhiyuan & Shan, Yuli & Duan, Haiyan & Wang, Shuo & Song, Junnian & Wang, Xian'en, 2019. "Low-carbon developments in Northeast China: Evidence from cities," Applied Energy, Elsevier, vol. 236(C), pages 1019-1033.
    12. Liu, Yajuan & Wang, Yutao & Mi, Zhifu & Ma, Zhongyu, 2018. "Carbon implications of China’s changing economic structure at the city level," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 163-171.
    13. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    14. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    15. Victoria Y. Fan & Dean T. Jamison & Lawrence H. Summers, 2016. "The Inclusive Cost of Pandemic Influenza Risk," NBER Working Papers 22137, National Bureau of Economic Research, Inc.
    16. Zhang, Yun-Long & Liu, Lan-Cui & Kang, Jia-Ning & Peng, Song & Mi, Zhifu & Liao, Hua & Wei, Yi-Ming, 2024. "Economic feasibility assessment of coal-biomass co-firing power generation technology," Energy, Elsevier, vol. 296(C).
    17. Henrik Andersson & James Hammitt & Gunnar Lindberg & Kristian Sundström, 2013. "Willingness to Pay and Sensitivity to Time Framing: A Theoretical Analysis and an Application on Car Safety," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 437-456, November.
    18. Acland, Daniel J. & Greenberg, David H., 2023. "Distributional weighting and welfare/equity tradeoffs: a new approach," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 14(1), pages 68-92, March.
    19. Herrera-Araujo, Daniel & Rochaix, Lise, 2020. "Does the Value per Statistical Life vary with age or baseline health? Evidence from a compensating wage study in France," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    20. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:1049-1061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.