IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v104y2017icp80-88.html
   My bibliography  Save this article

Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry

Author

Listed:
  • Murphy, Fionnuala
  • McDonnell, Kevin

Abstract

A criticism of production-based reporting and accounting of greenhouse gas emissions, as implemented under the UNFCCC and Kyoto Protocol, is the risk of mitigation measures adoption in one country to reduce national emissions, leading consequentially to the displacement of the source activity to other jurisdictions, thus resulting in an increase in net global emissions referred to as “carbon leakage”. An important outcome of the 21st Conference of the Parties (COP) to the 1992 UNFCCC may be “plugging” of carbon leakage. This study examined the bioenergy industry in Ireland to determine the extent of existing carbon leakage due to national energy policy and to establish if measures identified within the relevant intended nationally determined contributions will result in plugging of carbon leakage. The study focused on co-firing of biomass with peat, the major use of biomass for energy generation in Ireland. The results show that significant levels of carbon leakage occur due to reliance on imported biomass feedstocks to meet co-firing targets under Irish energy policy. In the post-COP21 scenario, one of the three Intended Nationally Determined Contributions analysed contains a measure which has the potential to reduce greenhouse gas emissions from imported biomass by 32%, highlighting the potential of the Paris Agreement to reduce carbon leakage.

Suggested Citation

  • Murphy, Fionnuala & McDonnell, Kevin, 2017. "Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry," Energy Policy, Elsevier, vol. 104(C), pages 80-88.
  • Handle: RePEc:eee:enepol:v:104:y:2017:i:c:p:80-88
    DOI: 10.1016/j.enpol.2017.01.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517300526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.01.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, vol. 116(C), pages 1-8.
    2. Fionnuala Murphy & Ger Devlin & Kevin McDonnell, 2015. "Benchmarking Environmental Impacts of Peat Use for Electricity Generation in Ireland—A Life Cycle Assessment," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    3. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2013. "Miscanthus production and processing in Ireland: An analysis of energy requirements and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 412-420.
    4. Stefan Frank & Hannes Böttcher & Mykola Gusti & Petr Havlík & Ger Klaassen & Georg Kindermann & Michael Obersteiner, 2016. "Dynamics of the land use, land use change, and forestry sink in the European Union: the impacts of energy and climate targets for 2030," Climatic Change, Springer, vol. 138(1), pages 253-266, September.
    5. Smeets, Edward M.W. & Lewandowski, Iris M. & Faaij, André P.C., 2009. "The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1230-1245, August.
    6. Murphy, Fionnuala & Sosa, Amanda & McDonnell, Kevin & Devlin, Ger, 2016. "Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction," Energy, Elsevier, vol. 109(C), pages 1040-1055.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Bo-Jhih & Chen, Wei-Hsin & Hsieh, Tzu-Hsien & Ong, Hwai Chyuan & Show, Pau Loke & Naqvi, Salman Raza, 2019. "Oxidative reaction interaction and synergistic index of emulsified pyrolysis bio-oil/diesel fuels," Renewable Energy, Elsevier, vol. 136(C), pages 223-234.
    2. Oskar Englund & Ioannis Dimitriou & Virginia H. Dale & Keith L. Kline & Blas Mola‐Yudego & Fionnuala Murphy & Burton English & John McGrath & Gerald Busch & Maria Cristina Negri & Mark Brown & Kevin G, 2020. "Multifunctional perennial production systems for bioenergy: performance and progress," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    3. Lin, Boqiang & Raza, Muhammad Yousaf, 2020. "Analysis of energy security indicators and CO2 emissions. A case from a developing economy," Energy, Elsevier, vol. 200(C).
    4. Batten, Jonathan A. & Kinateder, Harald & Szilagyi, Peter G. & Wagner, Niklas F., 2018. "Addressing COP21 using a stock and oil market integration index," Energy Policy, Elsevier, vol. 116(C), pages 127-136.
    5. Liusuo Hu & Jian Hu & Weilung Huang, 2023. "Evolutionary Analysis of the Solar Photovoltaic Products Trade Network in Belt and Road Initiative Countries from an Economic Perspective," Energies, MDPI, vol. 16(17), pages 1-30, September.
    6. Vassilis Stavrakas & Niki-Artemis Spyridaki & Alexandros Flamos, 2018. "Striving towards the Deployment of Bio-Energy with Carbon Capture and Storage (BECCS): A Review of Research Priorities and Assessment Needs," Sustainability, MDPI, vol. 10(7), pages 1-27, June.
    7. Zhang, Zengkai & Zhu, Kunfu, 2017. "Border carbon adjustments for exports of the United States and the European Union: Taking border-crossing frequency into account," Applied Energy, Elsevier, vol. 201(C), pages 188-199.
    8. Stanley U. Okoro & Udo Schickhoff & Uwe A. Schneider, 2018. "Impacts of Bioenergy Policies on Land-Use Change in Nigeria," Energies, MDPI, vol. 11(1), pages 1-18, January.
    9. Chen, Wei-Hsin & Lin, Bo-Jhih & Colin, Baptiste & Chang, Jo-Shu & Pétrissans, Anélie & Bi, Xiaotao & Pétrissans, Mathieu, 2018. "Hygroscopic transformation of woody biomass torrefaction for carbon storage," Applied Energy, Elsevier, vol. 231(C), pages 768-776.
    10. Piçarra, Alexandre & Annesley, Irvine R. & Otsuki, Akira & de Waard, Robbert, 2021. "Market assessment of cobalt: Identification and evaluation of supply risk patterns," Resources Policy, Elsevier, vol. 73(C).
    11. Tan, Xiujie & Liu, Yu & Cui, Jingbo & Su, Bin, 2018. "Assessment of carbon leakage by channels: An approach combining CGE model and decomposition analysis," Energy Economics, Elsevier, vol. 74(C), pages 535-545.
    12. Wu, Libo & Zhou, Ying & Qian, Haoqi, 2022. "Global actions under the Paris agreement: Tracing the carbon leakage flow and pursuing countermeasures," Energy Economics, Elsevier, vol. 106(C).
    13. Petr Procházka & Vladimír Hönig, 2018. "Economic Analysis of Diesel-Fuel Replacement by Crude Palm Oil in Indonesian Power Plants," Energies, MDPI, vol. 11(3), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2018. "Evaluation of the potential and geospatial distribution of waste and residues for bio-SNG production: A case study for the Republic of Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 288-301.
    2. Vance, C. & Sweeney, J. & Murphy, F., 2022. "Space, time, and sustainability: The status and future of life cycle assessment frameworks for novel biorefinery systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Murphy, Fionnuala & Sosa, Amanda & McDonnell, Kevin & Devlin, Ger, 2016. "Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction," Energy, Elsevier, vol. 109(C), pages 1040-1055.
    4. Fionnuala Murphy & Ger Devlin & Kevin McDonnell, 2015. "Benchmarking Environmental Impacts of Peat Use for Electricity Generation in Ireland—A Life Cycle Assessment," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    5. Perrin, Aurelie & Wohlfahrt, Julie & Morandi, Fabiana & Østergård, Hanne & Flatberg, Truls & De La Rua, Cristina & Bjørkvoll, Thor & Gabrielle, Benoit, 2017. "Integrated design and sustainable assessment of innovative biomass supply chains: A case-study on miscanthus in France," Applied Energy, Elsevier, vol. 204(C), pages 66-77.
    6. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    7. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    8. Amanda Sosa & Kevin McDonnell & Ger Devlin, 2015. "Analysing Performance Characteristics of Biomass Haulage in Ireland for Bioenergy Markets with GPS, GIS and Fuel Diagnostic Tools," Energies, MDPI, vol. 8(10), pages 1-16, October.
    9. Vyn, Richard J. & Virani, Tasneem & Deen, Bill, 2012. "Examining the economic feasibility of miscanthus in Ontario: An application to the greenhouse industry," Energy Policy, Elsevier, vol. 50(C), pages 669-676.
    10. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    11. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Miranowski, John & Rosburg, Alicia, 2010. "An Economic Breakeven Model of Cellulosic Feedstock Production and Ethanol Conversion with Implied Carbon Pricing," Staff General Research Papers Archive 13166, Iowa State University, Department of Economics.
    13. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    14. Rahman, Md. Mizanur & B. Mostafiz, Suraiya & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuel reserves are diminishing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 108-119.
    15. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    16. van der Hilst, F. & Lesschen, J.P. & van Dam, J.M.C. & Riksen, M. & Verweij, P.A. & Sanders, J.P.M. & Faaij, A.P.C., 2012. "Spatial variation of environmental impacts of regional biomass chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2053-2069.
    17. van der Hilst, F. & Dornburg, V. & Sanders, J.P.M. & Elbersen, B. & Graves, A. & Turkenburg, W.C. & Elbersen, H.W. & van Dam, J.M.C. & Faaij, A.P.C., 2010. "Potential, spatial distribution and economic performance of regional biomass chains: The North of the Netherlands as example," Agricultural Systems, Elsevier, vol. 103(7), pages 403-417, September.
    18. Maneesh Kumar Mediboyina & Fionnuala Murphy, 2024. "Environmental Assessment of a Waste-to-Energy Cascading System Integrating Forestry Residue Pyrolysis and Poultry Litter Anaerobic Digestion," Energies, MDPI, vol. 17(7), pages 1-15, March.
    19. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    20. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:104:y:2017:i:c:p:80-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.