IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp1040-1055.html
   My bibliography  Save this article

Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction

Author

Listed:
  • Murphy, Fionnuala
  • Sosa, Amanda
  • McDonnell, Kevin
  • Devlin, Ger

Abstract

The energy sector is the major contributor to GHG (greenhouse gas emissions) in Ireland. Under EU Renewable energy targets, Ireland must achieve contributions of 40%, 12% and 10% from renewables to electricity, heat and transport respectively by 2020, in addition to a 20% reduction in GHG emissions. Life cycle assessment methodology was used to carry out a comprehensive, holistic evaluation of biomass-to-energy systems in 2020 based on indigenous biomass supply chains optimised to reduce production and transportation GHG emissions. Impact categories assessed include; global warming, acidification, eutrophication potentials, and energy demand. Two biomass energy conversion technologies are considered; co-firing with peat, and biomass CHP (combined heat and power) systems. Biomass is allocated to each plant according to a supply optimisation model which ensures minimal GHG emissions. The study shows that while CHP systems produce lower environmental impacts than co-firing systems in isolation, determining overall environmental impacts requires analysis of the reference energy systems which are displaced. In addition, if the aims of these systems are to increase renewable energy penetration in line with the renewable electricity and renewable heat targets, the optimal scenario may not be the one which achieves the greatest environmental impact reductions.

Suggested Citation

  • Murphy, Fionnuala & Sosa, Amanda & McDonnell, Kevin & Devlin, Ger, 2016. "Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction," Energy, Elsevier, vol. 109(C), pages 1040-1055.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:1040-1055
    DOI: 10.1016/j.energy.2016.04.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630545X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, vol. 116(C), pages 1-8.
    2. Asam, Zaki-ul-Zaman & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Rafique, Rashad & Kiely, Ger & Murphy, Jerry D., 2011. "How can we improve biomethane production per unit of feedstock in biogas plants?," Applied Energy, Elsevier, vol. 88(6), pages 2013-2018, June.
    3. Viana, H. & Cohen, Warren B. & Lopes, D. & Aranha, J., 2010. "Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal," Applied Energy, Elsevier, vol. 87(8), pages 2551-2560, August.
    4. Göran Berndes & Serina Ahlgren & Pål Börjesson & Annette L. Cowie, 2013. "Bioenergy and land use change—state of the art," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(3), pages 282-303, May.
    5. Judl, Jáchym & Koskela, Sirkka & Korpela, Timo & Karvosenoja, Niko & Häyrinen, Anna & Rantsi, Jari, 2014. "Net environmental impacts of low-share wood pellet co-combustion in an existing coal-fired CHP (combined heat and power) production in Helsinki, Finland," Energy, Elsevier, vol. 77(C), pages 844-851.
    6. Sebastián, F. & Royo, J. & Gómez, M., 2011. "Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology," Energy, Elsevier, vol. 36(4), pages 2029-2037.
    7. Čuček, Lidija & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2012. "Total footprints-based multi-criteria optimisation of regional biomass energy supply chains," Energy, Elsevier, vol. 44(1), pages 135-145.
    8. Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
    9. Buytaert, V. & Muys, B. & Devriendt, N. & Pelkmans, L. & Kretzschmar, J.G. & Samson, R., 2011. "Towards integrated sustainability assessment for energetic use of biomass: A state of the art evaluation of assessment tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3918-3933.
    10. Geoffrey Guest & Ryan M. Bright & Francesco Cherubini & Ottar Michelsen & Anders Hammer Strømman, 2011. "Life Cycle Assessment of Biomass‐based Combined Heat and Power Plants," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 908-921, December.
    11. Holmberg, Henrik & Tuomaala, Mari & Haikonen, Turo & Ahtila, Pekka, 2012. "Allocation of fuel costs and CO2-emissions to heat and power in an industrial CHP plant: Case integrated pulp and paper mill," Applied Energy, Elsevier, vol. 93(C), pages 614-623.
    12. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.
    13. Annette Cowie & Pete Smith & Dale Johnson, 2006. "Does Soil Carbon Loss in Biomass Production Systems Negate the Greenhouse Benefits of Bioenergy?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 979-1002, September.
    14. Fionnuala Murphy & Ger Devlin & Kevin McDonnell, 2015. "Benchmarking Environmental Impacts of Peat Use for Electricity Generation in Ireland—A Life Cycle Assessment," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    15. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2013. "Miscanthus production and processing in Ireland: An analysis of energy requirements and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 412-420.
    16. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    17. Royo, Javier & Sebastián, Fernando & García-Galindo, Daniel & Gómez, Maider & Díaz, Maryori, 2012. "Large-scale analysis of GHG (greenhouse gas) reduction by means of biomass co-firing at country-scale: Application to the Spanish case," Energy, Elsevier, vol. 48(1), pages 255-267.
    18. Buonocore, Elvira & Franzese, Pier Paolo & Ulgiati, Sergio, 2012. "Assessing the environmental performance and sustainability of bioenergy production in Sweden: A life cycle assessment perspective," Energy, Elsevier, vol. 37(1), pages 69-78.
    19. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland," Applied Energy, Elsevier, vol. 137(C), pages 338-351.
    20. Devlin, Ger & Klvac, Radomir & McDonnell, Kevin, 2013. "Fuel efficiency and CO2 emissions of biomass based haulage in Ireland – A case study," Energy, Elsevier, vol. 54(C), pages 55-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    2. Liu, Yili & Xing, Peixuan & Liu, Jianguo, 2017. "Environmental performance evaluation of different municipal solid waste management scenarios in China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 98-106.
    3. Francesco Moresino & Emmanuel Fragnière, 2018. "Combining Behavioral Approaches with Techno-Economic Energy Models: Dealing with the Coupling Non-Linearity Issue," Energies, MDPI, vol. 11(7), pages 1-14, July.
    4. Casas-Ledón, Yannay & Flores, Mauricio & Jiménez, Romel & Ronsse, Frederik & Dewulf, Jo & Arteaga-Pérez, Luis E., 2019. "On the environmental and economic issues associated with the forestry residues-to-heat and electricity route in Chile: Sawdust gasification as a case study," Energy, Elsevier, vol. 170(C), pages 763-776.
    5. Vance, C. & Sweeney, J. & Murphy, F., 2022. "Space, time, and sustainability: The status and future of life cycle assessment frameworks for novel biorefinery systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Longo, Sonia & Cellura, Maurizio & Luu, Le Quyen & Nguyen, Thanh Quang & Rincione, Roberta & Guarino, Francesco, 2024. "Circular economy and life cycle thinking applied to the biomass supply chain: A review," Renewable Energy, Elsevier, vol. 220(C).
    7. Isabella Donnelly & Kevin McDonnell & John Finnan, 2019. "Novel Approaches to Optimise Early Growth in Willow Crops," Agriculture, MDPI, vol. 9(6), pages 1-15, June.
    8. Li, C.Y. & Wu, J.Y. & Shen, Y. & Kan, X. & Dai, Y.J. & Wang, C.-H., 2018. "Evaluation of a combined cooling, heating, and power system based on biomass gasification in different climate zones in the U.S," Energy, Elsevier, vol. 144(C), pages 326-340.
    9. Jahani, Hamed & Gholizadeh, Hadi & Hayati, Zahra & Fazlollahtabar, Hamed, 2023. "Investment risk assessment of the biomass-to-energy supply chain using system dynamics," Renewable Energy, Elsevier, vol. 203(C), pages 554-567.
    10. Nitkiewicz Tomasz & Ociepa-Kubicka Agnieszka, 2017. "Impact of Supply Chain Solutions on Environmental Performance of Biomass Use – LCA-based Research Case," Valahian Journal of Economic Studies, Sciendo, vol. 8(1), pages 57-66, April.
    11. Ling, Wen Choong & Verasingham, Arati Banu & Andiappan, Viknesh & Wan, Yoke Kin & Chew, Irene M.L. & Ng, Denny K.S., 2019. "An integrated mathematical optimisation approach to synthesise and analyse a bioelectricity supply chain network," Energy, Elsevier, vol. 178(C), pages 554-571.
    12. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2018. "Evaluation of the potential and geospatial distribution of waste and residues for bio-SNG production: A case study for the Republic of Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 288-301.
    13. Shah, Syed Ale Raza & Naqvi, Syed Asif Ali & Riaz, Sabahat & Anwar, Sofia & Abbas, Nasir, 2020. "Nexus of biomass energy, key determinants of economic development and environment: A fresh evidence from Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Murphy, Fionnuala & McDonnell, Kevin, 2017. "Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry," Energy Policy, Elsevier, vol. 104(C), pages 80-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    2. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    3. Albers, Ariane & Collet, Pierre & Lorne, Daphné & Benoist, Anthony & Hélias, Arnaud, 2019. "Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France," Applied Energy, Elsevier, vol. 239(C), pages 316-330.
    4. Nikodinoska, Natasha & Buonocore, Elvira & Paletto, Alessandro & Franzese, Pier Paolo, 2017. "Wood-based bioenergy value chain in mountain urban districts: An integrated environmental accounting framework," Applied Energy, Elsevier, vol. 186(P2), pages 197-210.
    5. Murphy, Fionnuala & McDonnell, Kevin, 2017. "Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry," Energy Policy, Elsevier, vol. 104(C), pages 80-88.
    6. Maung, Thein A. & McCarl, Bruce A., 2013. "Economic factors influencing potential use of cellulosic crop residues for electricity generation," Energy, Elsevier, vol. 56(C), pages 81-91.
    7. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    8. Amanda Sosa & Kevin McDonnell & Ger Devlin, 2015. "Analysing Performance Characteristics of Biomass Haulage in Ireland for Bioenergy Markets with GPS, GIS and Fuel Diagnostic Tools," Energies, MDPI, vol. 8(10), pages 1-16, October.
    9. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    10. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    11. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    12. Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
    13. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems," Sustainability, MDPI, vol. 8(11), pages 1-12, November.
    14. Manzone, Marco & Calvo, Angela, 2017. "Woodchip transportation: Climatic and congestion influence on productivity, energy and CO2 emission of agricultural and industrial convoys," Renewable Energy, Elsevier, vol. 108(C), pages 250-259.
    15. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2018. "Evaluation of the potential and geospatial distribution of waste and residues for bio-SNG production: A case study for the Republic of Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 288-301.
    16. Fionnuala Murphy & Ger Devlin & Kevin McDonnell, 2015. "Benchmarking Environmental Impacts of Peat Use for Electricity Generation in Ireland—A Life Cycle Assessment," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    17. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Devlin, Ger & Talbot, Bruce, 2014. "Deriving cooperative biomass resource transport supply strategies in meeting co-firing energy regulations: A case for peat and wood fibre in Ireland," Applied Energy, Elsevier, vol. 113(C), pages 1700-1709.
    19. Cambero, Claudia & Hans Alexandre, Mariane & Sowlati, Taraneh, 2015. "Life cycle greenhouse gas analysis of bioenergy generation alternatives using forest and wood residues in remote locations: A case study in British Columbia, Canada," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 59-72.
    20. Collotta, M. & Champagne, P. & Tomasoni, G. & Alberti, M. & Busi, L. & Mabee, W., 2019. "Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainabilty assessment perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:1040-1055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.