IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p152-d125894.html
   My bibliography  Save this article

Impacts of Bioenergy Policies on Land-Use Change in Nigeria

Author

Listed:
  • Stanley U. Okoro

    (Center for Earth System Research and Sustainability, Institute of Geography, Bundesstrasse 55, 20146 Hamburg, Germany)

  • Udo Schickhoff

    (Center for Earth System Research and Sustainability, Institute of Geography, Bundesstrasse 55, 20146 Hamburg, Germany)

  • Uwe A. Schneider

    (Center for Earth System Research and Sustainability, Research Unit Sustainability and Global Change, Grindelberg 5, 20144 Hamburg, Germany)

Abstract

In recent years, bioenergy policies have increased the competition for land as well as the risk of adverse environmental impacts resulting from deforestation and greenhouse gas emissions (GHGs). Primary land-use objectives confronting society today include meeting the growing demand for agricultural products, especially energy crops, preserving essential ecosystem services for human well-being and long-run agrarian production, and contributing to the climate policy target. Here, future agricultural, societal and environmental consequences of bioenergy policies under different global climate and societal development scenarios were assessed using a novel Forest and Agricultural Sector Optimization Model for Nigeria (NGA–FASOM). The results reveal that, in Nigeria, meeting emission reduction requires an implementation of a minimum carbon price of $80/ton within the forest and agricultural sectors. A carbon price alone is not sufficient to preserve the remaining forests and pasture land in Nigeria when bioenergy is subsidized. Furthermore, the result shows that subsidy on bioenergy does not have any significant effect on the total social welfare. The findings in this study provide a guide for policymakers in designing appropriate policies addressing bioenergy industry issues in Nigeria.

Suggested Citation

  • Stanley U. Okoro & Udo Schickhoff & Uwe A. Schneider, 2018. "Impacts of Bioenergy Policies on Land-Use Change in Nigeria," Energies, MDPI, vol. 11(1), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:152-:d:125894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schneider, Uwe A. & McCarl, Bruce A. & Schmid, Erwin, 2007. "Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry," Agricultural Systems, Elsevier, vol. 94(2), pages 128-140, May.
    2. Ohimain, Elijah Ige, 2013. "A review of the Nigerian biofuel policy and incentives (2007)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 246-256.
    3. Anderson, Kent P., 1972. "Optimal growth when the stock of resources is finite and depletable," Journal of Economic Theory, Elsevier, vol. 4(2), pages 256-267, April.
    4. Uwe Schneider & Bruce McCarl, 2003. "Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 291-312, April.
    5. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    6. Tas Thamo & David J. Pannell & Marit E. Kragt & Michael J. Robertson & Maksym Polyakov, 2017. "Dynamics and the economics of carbon sequestration: common oversights and their implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1095-1111, October.
    7. T. Takayama & G. G. Judge, 1964. "An Intertemporal Price Equilibrium Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 46(2), pages 477-484.
    8. Bruce A. McCarl & Thomas H. Spreen, 1980. "Price Endogenous Mathematical Programming As a Tool for Sector Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(1), pages 87-102.
    9. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    10. Murphy, Fionnuala & McDonnell, Kevin, 2017. "Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry," Energy Policy, Elsevier, vol. 104(C), pages 80-88.
    11. Bracco, Stefania, 2015. "Effectiveness of EU biofuels sustainability criteria in the context of land acquisitions in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 130-143.
    12. Ben-Iwo, Juliet & Manovic, Vasilije & Longhurst, Philip, 2016. "Biomass resources and biofuels potential for the production of transportation fuels in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 172-192.
    13. Di Sbroiavacca, Nicolás & Nadal, Gustavo & Lallana, Francisco & Falzon, James & Calvin, Katherine, 2016. "Emissions reduction scenarios in the Argentinean Energy Sector," Energy Economics, Elsevier, vol. 56(C), pages 552-563.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
    2. Dick, Ndukwe Agbai & Wilson, Paul, 2018. "Analysis of the inherent energy-food dilemma of the Nigerian biofuels policy using partial equilibrium model: The Nigerian Energy-Food Model (NEFM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 500-514.
    3. Kenneth R. Szulczyk & Muhammad A. Cheema & Ross Cullen & Atiqur Rahman Khan, 2020. "Bioelectricity in Malaysia: economic feasibility, environmental and deforestation implications," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), pages 294-321, April.
    4. Szulczyk, Kenneth R. & Ziaei, Sayyed Mahdi & Zhang, Changyong, 2021. "Environmental ramifications and economic viability of bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 172(C), pages 780-788.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kesheng Shu & Uwe A. Schneider & Jürgen Scheffran, 2015. "Bioenergy and Food Supply: A Spatial-Agent Dynamic Model of Agricultural Land Use for Jiangsu Province in China," Energies, MDPI, vol. 8(11), pages 1-24, November.
    2. Ugwoke, B. & Gershon, O. & Becchio, C. & Corgnati, S.P. & Leone, P., 2020. "A review of Nigerian energy access studies: The story told so far," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    4. Henseler, Martin & Dechow, Rene, 2014. "Simulation of regional nitrous oxide emissions from German agricultural mineral soils: A linkage between an agro-economic model and an empirical emission model," Agricultural Systems, Elsevier, vol. 124(C), pages 70-82.
    5. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    6. MacLeod, Michael & Moran, Dominic & Eory, Vera & Rees, R.M. & Barnes, Andrew & Topp, Cairistiona F.E. & Ball, Bruce & Hoad, Steve & Wall, Eileen & McVittie, Alistair & Pajot, Guillaume & Matthews, Rob, 2010. "Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK," Agricultural Systems, Elsevier, vol. 103(4), pages 198-209, May.
    7. Mosnier, A. & Havlík, P. & Valin, H. & Baker, J. & Murray, B. & Feng, S. & Obersteiner, M. & McCarl, B.A. & Rose, S.K. & Schneider, U.A., 2013. "Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth," Energy Policy, Elsevier, vol. 57(C), pages 602-614.
    8. Schneider, Uwe A. & McCarl, Bruce A., 2005. "Implications of a Carbon-Based Energy Tax for U.S. Agriculture," Agricultural and Resource Economics Review, Cambridge University Press, vol. 34(2), pages 265-279, October.
    9. Monica Maduekwe & Uduak Akpan & Salisu Isihak, 2020. "Road Transport Energy Consumption and Vehicular Emissions in Lagos, Nigeria," Research Africa Network Working Papers 20/055, Research Africa Network (RAN).
    10. Pierre-Alain Jayet & Athanasios Petsakos & Raja Chakir & Anna Lungarska & Stéphane De Cara & Elvire Petel & Pierre Humblot & Caroline Godard & David Leclère & Pierre Cantelaube & Cyril Bourgeois & Mél, 2023. "The European agro-economic model AROPAj," Working Papers hal-04109872, HAL.
    11. Vermont, Bruno & De Cara, Stéphane, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Ecological Economics, Elsevier, vol. 69(7), pages 1373-1386, May.
    12. Dioha, Michael O. & Kumar, Atul, 2020. "Sustainable energy pathways for land transport in Nigeria," Utilities Policy, Elsevier, vol. 64(C).
    13. Kung, Chih-Chun & Zhang, Liguo & Kong, Fanbin, 2016. "How government subsidy leads to sustainable bioenergy development," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 275-284.
    14. Zhao, Xin & Calvin, Katherine & Wise, Marshall, 2020. "The critical role of conversion cost and comparative advantage in modeling agricultural land use change," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304204, Agricultural and Applied Economics Association.
    15. Xu, Yuelu & Elbakidze, Levan & Yen, Haw & Arnold, Jeffrey G. & Gassman, Philip W. & Hubbart, Jason & Strager, Michael P., 2022. "Integrated assessment of nitrogen runoff to the Gulf of Mexico," Resource and Energy Economics, Elsevier, vol. 67(C).
    16. Chih-Chun KUNG, 2018. "A dynamic framework of sustainable development in agriculture and bioenergy," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(10), pages 445-455.
    17. Das, Prantika & Gundimeda, Haripriya, 2021. "Economic Evaluation of Achieving Biofuel Mandate through Advanced Biofuels in Developing Country: Case of India," 2021 Conference, August 17-31, 2021, Virtual 315355, International Association of Agricultural Economists.
    18. Garnache, Cloe & Merel, Pierre R. & Lee, Juhwan & Six, Johan, 2014. "Markets for Agricultural Greenhouse Gas Offsets: The Role of Policy Design on Abatement Efficiency," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170718, Agricultural and Applied Economics Association.
    19. Schneider, Uwe A. & McCarl, Bruce A. & Schmid, Erwin, 2007. "Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry," Agricultural Systems, Elsevier, vol. 94(2), pages 128-140, May.
    20. Valin, Hugo & Havlik, Petr & Mosnier, Aline & Obersteiner, Michael, 2010. "Climate Change Mitigation And Future Food Consumption Patterns," 115th Joint EAAE/AAEA Seminar, September 15-17, 2010, Freising-Weihenstephan, Germany 116392, European Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:152-:d:125894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.