IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i10p12004-12019d57569.html
   My bibliography  Save this article

Analysing Performance Characteristics of Biomass Haulage in Ireland for Bioenergy Markets with GPS, GIS and Fuel Diagnostic Tools

Author

Listed:
  • Amanda Sosa

    (School of Biosystems Engineering, University College Dublin, Dublin 4, Ireland)

  • Kevin McDonnell

    (School of Biosystems Engineering, University College Dublin, Dublin 4, Ireland)

  • Ger Devlin

    (UCD Forestry, University College Dublin, Dublin 4, Ireland)

Abstract

In Ireland, truck transport by road dominates and will remain the main transportation mode of biomass. Cost efficiency and flexibility of forest transport can be typically improved by optimising routes. It is important to know every process and attributes within the workflow of roundwood transport. This study aimed to analyse characteristics of timber trucking in Ireland, and to estimate the least-cost route for the distribution of biomass with the use of geographic information systems (GIS). Firstly, a tracking system that recorded the truck’s movements and fuel consumption was installed. A total of 152 trips were recorded, routes were chosen by the truck driver. The recorded information was used to analyse the distances and times travelled loaded and unloaded per road class, breaks, loading and unloading times as well as fuel consumption. Secondly, the routes taken by the truck where compared with routes created using Network Analyst (NA), an extension of ArcGIS. Four scenarios based on route selection criteria were selected: shortest distance (S1), shorted time (S2), and prioritising high-class roads with shortest distance (S3) and time (S4). Results from the analysis of the tracking system data showed that driving both loaded and unloaded occupied on average 69% of the driver’s working shift; with an average time driving loaded of 49%. The travel distance per trip varied from 112 km and 197 km, with the truck driver using mostly national and regional roads. An average 2% of the total distance and 11% of the total time was spent driving on forest roads. In general, the truck’s speed recorded on the different road classes was on average 30% lower than the legal maximum speed. The average fuel consumption was 0.64 L/km. In terms of the route comparison, the driving directions from the truck routes coincided with 77% of the directions of the routes based on shortest driving time (S2 and S4). All the routes chosen by the driver had 22% longer distance than the routes in S1 (shortest distance). The routes selected based on shortest distance (S1 and S3) had the longest travelling time, approximately 19% more than the ones taken by the truck and 30% more than S2 and S4. The average running cost for the truck was 0.83 €/km. Choosing the shortest distance routes (S1 and S3) not only implies reducing travelling costs but also a reduction of CO 2 emissions by 12% in comparison to routes in S2 and S4. However, when selecting the routes, travel time can be a much more crucial parameter to analyse rather than distance in terms of transportation costs. Choosing the routes generated in scenario S2 over S1 implied an increase in distance by 12% but a decrease in time of 30%. Less driving time translates into better driving conditions across higher classes or roads; less wear and tear of trucks; and lesser fuel used. It also complies with local authorities preferences of having timber trucks move on higher road types in order to minimise the expenses associated with road maintenance.

Suggested Citation

  • Amanda Sosa & Kevin McDonnell & Ger Devlin, 2015. "Analysing Performance Characteristics of Biomass Haulage in Ireland for Bioenergy Markets with GPS, GIS and Fuel Diagnostic Tools," Energies, MDPI, vol. 8(10), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:12004-12019:d:57569
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/10/12004/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/10/12004/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, vol. 116(C), pages 1-8.
    2. Devlin, Ger J. & McDonnell, Kevin & Ward, Shane, 2008. "Timber haulage routing in Ireland: an analysis using GIS and GPS," Journal of Transport Geography, Elsevier, vol. 16(1), pages 63-72.
    3. Devlin, Ger & Talbot, Bruce, 2014. "Deriving cooperative biomass resource transport supply strategies in meeting co-firing energy regulations: A case for peat and wood fibre in Ireland," Applied Energy, Elsevier, vol. 113(C), pages 1700-1709.
    4. Devlin, Ger & Klvac, Radomir & McDonnell, Kevin, 2013. "Fuel efficiency and CO2 emissions of biomass based haulage in Ireland – A case study," Energy, Elsevier, vol. 54(C), pages 55-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehsan Noorollahi & Dawud Fadai & Mohsen Akbarpour Shirazi & Seyed Hassan Ghodsipour, 2016. "Land Suitability Analysis for Solar Farms Exploitation Using GIS and Fuzzy Analytic Hierarchy Process (FAHP)—A Case Study of Iran," Energies, MDPI, vol. 9(8), pages 1-24, August.
    2. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland," Applied Energy, Elsevier, vol. 137(C), pages 338-351.
    2. Fionnuala Murphy & Ger Devlin & Kevin McDonnell, 2015. "Benchmarking Environmental Impacts of Peat Use for Electricity Generation in Ireland—A Life Cycle Assessment," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    3. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, vol. 116(C), pages 1-8.
    4. Murphy, Fionnuala & Sosa, Amanda & McDonnell, Kevin & Devlin, Ger, 2016. "Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction," Energy, Elsevier, vol. 109(C), pages 1040-1055.
    5. Amanda Sosa & Radomir Klvac & Enda Coates & Tom Kent & Ger Devlin, 2015. "Improving Log Loading Efficiency for Improved Sustainable Transport within the Irish Forest and Biomass Sectors," Sustainability, MDPI, vol. 7(3), pages 1-14, March.
    6. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    7. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    8. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    9. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    10. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Managing the moisture content of wood biomass for the optimisation of Ireland's transport supply strategy to bioenergy markets and competing industries," Energy, Elsevier, vol. 86(C), pages 354-368.
    11. Kilcline, Kevin & Dhubháin, Áine Ní & Heanue, Kevin & O'Donoghue, Cathal & Ryan, Mary, 2021. "Addressing the challenge of wood mobilisation through a systemic innovation lens: The Irish forest sector innovation system," Forest Policy and Economics, Elsevier, vol. 128(C).
    12. Maneesh Kumar Mediboyina & Fionnuala Murphy, 2024. "Environmental Assessment of a Waste-to-Energy Cascading System Integrating Forestry Residue Pyrolysis and Poultry Litter Anaerobic Digestion," Energies, MDPI, vol. 17(7), pages 1-15, March.
    13. Manzone, Marco & Calvo, Angela, 2017. "Woodchip transportation: Climatic and congestion influence on productivity, energy and CO2 emission of agricultural and industrial convoys," Renewable Energy, Elsevier, vol. 108(C), pages 250-259.
    14. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2018. "Evaluation of the potential and geospatial distribution of waste and residues for bio-SNG production: A case study for the Republic of Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 288-301.
    15. Sangpil Ko & Kyoungjoon Choi & Seungmin Yu & Jun Lee, 2022. "A Stochastic Optimization Model for Sustainable Multimodal Transportation for Bioenergy Production," Sustainability, MDPI, vol. 14(3), pages 1-21, February.
    16. Devlin, Ger & Talbot, Bruce, 2014. "Deriving cooperative biomass resource transport supply strategies in meeting co-firing energy regulations: A case for peat and wood fibre in Ireland," Applied Energy, Elsevier, vol. 113(C), pages 1700-1709.
    17. Costa, Fabrício Rodrigues & Ribeiro, Carlos Antonio Alvares Soares & Marcatti, Gustavo Eduardo & Lorenzon, Alexandre Simões & Teixeira, Thaisa Ribeiro & Domingues, Getulio Fonseca & Castro, Nero Lemos, 2020. "GIS applied to location of bioenergy plants in tropical agricultural areas," Renewable Energy, Elsevier, vol. 153(C), pages 911-918.
    18. Hoefnagels, Ric & Resch, Gustav & Junginger, Martin & Faaij, André, 2014. "International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union," Applied Energy, Elsevier, vol. 131(C), pages 139-157.
    19. Maria Pergola & Angelo Rita & Alfonso Tortora & Maria Castellaneta & Marco Borghetti & Antonio Sergio De Franchi & Antonio Lapolla & Nicola Moretti & Giovanni Pecora & Domenico Pierangeli & Luigi Toda, 2020. "Identification of Suitable Areas for Biomass Power Plant Construction through Environmental Impact Assessment of Forest Harvesting Residues Transportation," Energies, MDPI, vol. 13(11), pages 1-16, May.
    20. Michela Zanetti & Corrado Costa & Rosa Greco & Stefano Grigolato & Giovanna Ottaviani Aalmo & Raffaele Cavalli, 2017. "How Wood Fuels’ Quality Relates to the Standards: A Class-Modelling Approach," Energies, MDPI, vol. 10(10), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:12004-12019:d:57569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.