IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221013803.html
   My bibliography  Save this article

Implementation of new technologies for reducing fuel consumption of automobiles in Brazil according to the Brazilian Vehicle Labelling Programme

Author

Listed:
  • de Salvo Junior, Orlando
  • Saraiva de Souza, Maria Tereza
  • Vaz de Almeida, Flávio G.

Abstract

The consumption of fossil fuels by motor vehicles has increased greenhouse gas emissions in the atmosphere. The automotive industry has invested in environmental technologies to reduce these emissions. This study aimed to determine whether in light-duty vehicles deploying environmental technologies met the energy efficiency ratings of the Brazilian Vehicle Labelling Programme (BVLP) in 2013, 2015, and 2017. In 2013, Brazil implemented the ‘INOVAR-AUTO’ regulation to improve vehicle energy efficiency. Based on information from the BVLP database, the actual efficiencies of light-duty vehicles were compared with those mandated by the regulation. The effectiveness of the regulation was assessed using the growth rates of the energy consumption and annual A ratings. The results showed that certain powertrain technologies increased the energy efficiency, resulting in many vehicles with A ratings from the BVLP. The use of three-cylinder engines and variable valve timing (VVT) had the highest positive effects on improving the energy efficiency.

Suggested Citation

  • de Salvo Junior, Orlando & Saraiva de Souza, Maria Tereza & Vaz de Almeida, Flávio G., 2021. "Implementation of new technologies for reducing fuel consumption of automobiles in Brazil according to the Brazilian Vehicle Labelling Programme," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013803
    DOI: 10.1016/j.energy.2021.121132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013803
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Tie-Qiao & Liao, Peng & Ou, Hui & Zhang, Jian, 2018. "A fuel-optimal driving strategy for a single vehicle with CVT," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 114-123.
    2. Budde Christensen, Thomas & Wells, Peter & Cipcigan, Liana, 2012. "Can innovative business models overcome resistance to electric vehicles? Better Place and battery electric cars in Denmark," Energy Policy, Elsevier, vol. 48(C), pages 498-505.
    3. Taylor, Alex M.K.P., 2008. "Science review of internal combustion engines," Energy Policy, Elsevier, vol. 36(12), pages 4657-4667, December.
    4. Simmons, Richard A. & Shaver, Gregory M. & Tyner, Wallace E. & Garimella, Suresh V., 2015. "A benefit-cost assessment of new vehicle technologies and fuel economy in the U.S. market," Applied Energy, Elsevier, vol. 157(C), pages 940-952.
    5. Oh, Yunjung & Park, Junhong & Lee, Jong Tae & Seo, Jigu & Park, Sungwook, 2016. "Development strategies to satisfy corporate average CO2 emission regulations of light duty vehicles (LDVs) in Korea," Energy Policy, Elsevier, vol. 98(C), pages 121-132.
    6. Bergek, Anna & Berggren, Christian, 2014. "The impact of environmental policy instruments on innovation: A review of energy and automotive industry studies," Ecological Economics, Elsevier, vol. 106(C), pages 112-123.
    7. Bastin, Cristina & Szklo, Alexandre & Rosa, Luiz Pinguelli, 2010. "Diffusion of new automotive technologies for improving energy efficiency in Brazil's light vehicle fleet," Energy Policy, Elsevier, vol. 38(7), pages 3586-3597, July.
    8. Mona Chitnis & Roger Fouquet & Steve Sorrell, 2020. "Rebound Effects for Household Energy Services in the UK," The Energy Journal, , vol. 41(4), pages 31-60, July.
    9. Lipscy, Phillip Y. & Schipper, Lee, 2013. "Energy efficiency in the Japanese transport sector," Energy Policy, Elsevier, vol. 56(C), pages 248-258.
    10. Difiglio, Carmen, 1997. "Using advanced technologies to reduce motor vehicle greenhouse gas emissions," Energy Policy, Elsevier, vol. 25(14-15), pages 1173-1178, December.
    11. Gölcü, Mustafa & Sekmen, Yakup & ErduranlI, Perihan & Sahir Salman, M., 2005. "Artificial neural-network based modeling of variable valve-timing in a spark-ignition engine," Applied Energy, Elsevier, vol. 81(2), pages 187-197, June.
    12. Plotkin, Steven E., 2009. "Examining fuel economy and carbon standards for light vehicles," Energy Policy, Elsevier, vol. 37(10), pages 3843-3853, October.
    13. Triantafyllopoulos, Georgios & Kontses, Anastasios & Tsokolis, Dimitrios & Ntziachristos, Leonidas & Samaras, Zissis, 2017. "Potential of energy efficiency technologies in reducing vehicle consumption under type approval and real world conditions," Energy, Elsevier, vol. 140(P1), pages 365-373.
    14. Iodice, Paolo & Senatore, Adolfo & Langella, Giuseppe & Amoresano, Amedeo, 2016. "Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation," Applied Energy, Elsevier, vol. 179(C), pages 182-190.
    15. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    16. Greene, David L. & Sims, Charles B. & Muratori, Matteo, 2020. "Two trillion gallons: Fuel savings from fuel economy improvements to US light-duty vehicles, 1975–2018," Energy Policy, Elsevier, vol. 142(C).
    17. Feneley, Adam J. & Pesiridis, Apostolos & Andwari, Amin Mahmoudzadeh, 2017. "Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting‐A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 959-975.
    18. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    19. Tietge, Uwe & Mock, Peter & Franco, Vicente & Zacharof, Nikiforos, 2017. "From laboratory to road: Modeling the divergence between official and real-world fuel consumption and CO2 emission values in the German passenger car market for the years 2001–2014," Energy Policy, Elsevier, vol. 103(C), pages 212-222.
    20. Vanessa Oltra & Maïder Saint Jean, 2009. "Sectoral systems of environmental innovation: an application to the French automotive industry," Post-Print hal-00274413, HAL.
    21. Fabio Vacca & Stefano De Pinto & Ahu Ece Hartavi Karci & Patrick Gruber & Fabio Viotto & Carlo Cavallino & Jacopo Rossi & Aldo Sorniotti, 2017. "On the Energy Efficiency of Dual Clutch Transmissions and Automated Manual Transmissions," Energies, MDPI, vol. 10(10), pages 1-22, October.
    22. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Fernandes Mosquim & Carlos Eduardo Keutenedjian Mady, 2022. "Performance and Efficiency Trade-Offs in Brazilian Passenger Vehicle Fleet," Energies, MDPI, vol. 15(15), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    2. Skeete, Jean-Paul, 2017. "Examining the role of policy design and policy interaction in EU automotive emissions performance gaps," Energy Policy, Elsevier, vol. 104(C), pages 373-381.
    3. Rafael Fernandes Mosquim & Carlos Eduardo Keutenedjian Mady, 2022. "Performance and Efficiency Trade-Offs in Brazilian Passenger Vehicle Fleet," Energies, MDPI, vol. 15(15), pages 1-22, July.
    4. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    5. Faria, Lourenço Galvão Diniz & Andersen, Maj Munch, 2017. "Sectoral patterns versus firm-level heterogeneity - The dynamics of eco-innovation strategies in the automotive sector," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 266-281.
    6. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    7. Jhang, Syu-Ruei & Lin, Yuan-Chung & Chen, Kang-Shin & Lin, Sheng-Lun & Batterman, Stuart, 2020. "Evaluation of fuel consumption, pollutant emissions and well-to-wheel GHGs assessment from a vehicle operation fueled with bioethanol, gasoline and hydrogen," Energy, Elsevier, vol. 209(C).
    8. Shoki Kosai & Muku Yuasa & Eiji Yamasue, 2020. "Chronological Transition of Relationship between Intracity Lifecycle Transport Energy Efficiency and Population Density," Energies, MDPI, vol. 13(8), pages 1-15, April.
    9. Befort, N., 2021. "The promises of drop-in vs. functional innovations: The case of bioplastics," Ecological Economics, Elsevier, vol. 181(C).
    10. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Dong, Zhaoyingzi & Liu, Haijing & Zhang, Weiwen, 2024. "The effect of information disclosure on low-carbon innovation," Energy, Elsevier, vol. 288(C).
    12. Yeh, Sonia & Burtraw, Dallas & Sterner, Thomas & Greene, David, 2021. "Tradable performance standards in the transportation sector," Energy Economics, Elsevier, vol. 102(C).
    13. Adrian Clenci & Adrian Bîzîiac & Pierre Podevin & Georges Descombes & Michael Deligant & Rodica Niculescu, 2013. "Idle Operation with Low Intake Valve Lift in a Port Fuel Injected Engine," Energies, MDPI, vol. 6(6), pages 1-18, June.
    14. Schmitt, William F. & Szklo, Alexandre & Schaeffer, Roberto, 2011. "Policies for improving the efficiency of the Brazilian light-duty vehicle fleet and their implications for fuel use, greenhouse gas emissions and land use," Energy Policy, Elsevier, vol. 39(6), pages 3163-3176, June.
    15. Tsiakmakis, Stefanos & Fontaras, Georgios & Dornoff, Jan & Valverde, Victor & Komnos, Dimitrios & Ciuffo, Biagio & Mock, Peter & Samaras, Zissis, 2019. "From lab-to-road & vice-versa: Using a simulation-based approach for predicting real-world CO2 emissions," Energy, Elsevier, vol. 169(C), pages 1153-1165.
    16. Wang, Sinan & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2017. "Heuristic method for automakers' technological strategy making towards fuel economy regulations based on genetic algorithm: A China's case under corporate average fuel consumption regulation," Applied Energy, Elsevier, vol. 204(C), pages 544-559.
    17. Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
    18. Skeete, Jean-Paul, 2018. "Level 5 autonomy: The new face of disruption in road transport," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 22-34.
    19. Patrick Moriarty & Damon Honnery, 2019. "Energy Efficiency or Conservation for Mitigating Climate Change?," Energies, MDPI, vol. 12(18), pages 1-17, September.
    20. Atabani, A.E. & Badruddin, Irfan Anjum & Mekhilef, S. & Silitonga, A.S., 2011. "A review on global fuel economy standards, labels and technologies in the transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4586-4610.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.