IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55332-5.html
   My bibliography  Save this article

Reducing transition costs towards carbon neutrality of China’s coal power plants

Author

Listed:
  • Rui Wang

    (Tsinghua University)

  • Wenjia Cai

    (Tsinghua University)

  • Ryna Yiyun Cui

    (University of Maryland)

  • Lin Huang

    (Microsoft Research AI4Science)

  • Weidong Ma

    (Microsoft Research Asia)

  • Binbin Qi

    (China University of Petroleum (Beijing))

  • Jia Zhang

    (Microsoft Research AI4Science)

  • Jiang Bian

    (Microsoft Research Asia)

  • Haoran Li

    (China Electric Power Planning & Engineering Institute
    Tsinghua University)

  • Shihui Zhang

    (Tsinghua University)

  • Jianxiang Shen

    (Tsinghua University)

  • Xian Zhang

    (Ministry of Science and Technology)

  • Jiutian Zhang

    (Beijing Normal University)

  • Wei Li

    (Tsinghua University)

  • Le Yu

    (Tsinghua University
    Ministry of Education Ecological Field Station for East Asian Migratory Birds
    Tsinghua University (Department of Earth System Science)- Xi’an Institute of Surveying and Mapping Joint Research Center for Next-Generation Smart Mapping)

  • Ning Zhang

    (Tsinghua University)

  • Can Wang

    (Tsinghua University)

Abstract

The same cumulative carbon emission reduction target can correspond to multiple emission reduction pathways. This study explores how different coal power transition pathways with the same cumulative emissions reductions impact the transition costs, by assessing the dynamic transition processes for coal plants adopting multiple mitigation technologies concurrently or sequentially, such as flexibility operation, biomass and coal co-firing, carbon capture and storage, and compulsory retirement. We develop a plant-level dynamic optimization model and apply it to China’s 4200+ coal plants. We find that under deep decarbonization, the majority of Chinese coal plants retrofit with multiple technologies to reduce emissions and retire naturally at lower costs while contributing to grid stability. Optimizing the pathway can potentially save over 700 billion U.S. Dollars for achieving the same target or increase cumulative emissions reduction from 30% to 50% at no additional cost. This analysis can help inform a cost-effective coal phase-out under China’s carbon neutrality.

Suggested Citation

  • Rui Wang & Wenjia Cai & Ryna Yiyun Cui & Lin Huang & Weidong Ma & Binbin Qi & Jia Zhang & Jiang Bian & Haoran Li & Shihui Zhang & Jianxiang Shen & Xian Zhang & Jiutian Zhang & Wei Li & Le Yu & Ning Zh, 2025. "Reducing transition costs towards carbon neutrality of China’s coal power plants," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55332-5
    DOI: 10.1038/s41467-024-55332-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55332-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55332-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xizhe Yan & Dan Tong & Yixuan Zheng & Yang Liu & Shaoqing Chen & Xinying Qin & Chuchu Chen & Ruochong Xu & Jing Cheng & Qinren Shi & Dongsheng Zheng & Kebin He & Qiang Zhang & Yu Lei, 2024. "Cost-effectiveness uncertainty may bias the decision of coal power transitions in China," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Joeri Rogelj & Piers M. Forster & Elmar Kriegler & Christopher J. Smith & Roland Séférian, 2019. "Estimating and tracking the remaining carbon budget for stringent climate targets," Nature, Nature, vol. 571(7765), pages 335-342, July.
    3. Shu Zhang & Wenying Chen, 2022. "Assessing the energy transition in China towards carbon neutrality with a probabilistic framework," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Yi-Ming Wei & Jia-Ning Kang & Lan-Cui Liu & Qi Li & Peng-Tao Wang & Juan-Juan Hou & Qiao-Mei Liang & Hua Liao & Shi-Feng Huang & Biying Yu, 2021. "A proposed global layout of carbon capture and storage in line with a 2 °C climate target," Nature Climate Change, Nature, vol. 11(2), pages 112-118, February.
    5. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    6. Zhenyu Zhuo & Ershun Du & Ning Zhang & Chris P. Nielsen & Xi Lu & Jinyu Xiao & Jiawei Wu & Chongqing Kang, 2022. "Cost increase in the electricity supply to achieve carbon neutrality in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Zoi Vrontisi & Gunnar Luderer & Bert Saveyn & Kimon Keramidas & Lara Aleluia Reis & Lavinia Baumstark & Christoph Bertram & Harmen Sytze de Boer & Laurent Drouet & Kostas Fragkiadakis & Oliver Fricko , 2018. "Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment," Post-Print halshs-01782274, HAL.
    8. Ryna Yiyun Cui & Nathan Hultman & Diyang Cui & Haewon McJeon & Sha Yu & Morgan R. Edwards & Arijit Sen & Kaihui Song & Christina Bowman & Leon Clarke & Junjie Kang & Jiehong Lou & Fuqiang Yang & Jiaha, 2021. "A plant-by-plant strategy for high-ambition coal power phaseout in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Dan Tong & Qiang Zhang & Yixuan Zheng & Ken Caldeira & Christine Shearer & Chaopeng Hong & Yue Qin & Steven J. Davis, 2019. "Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target," Nature, Nature, vol. 572(7769), pages 373-377, August.
    10. H. Damon Matthews & Nathan P. Gillett & Peter A. Stott & Kirsten Zickfeld, 2009. "The proportionality of global warming to cumulative carbon emissions," Nature, Nature, vol. 459(7248), pages 829-832, June.
    11. Ryna Yiyun Cui & Nathan Hultman & Morgan R. Edwards & Linlang He & Arijit Sen & Kavita Surana & Haewon McJeon & Gokul Iyer & Pralit Patel & Sha Yu & Ted Nace & Christine Shearer, 2019. "Quantifying operational lifetimes for coal power plants under the Paris goals," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    12. Yang, Bo & Wei, Yi-Ming & Liu, Lan-Cui & Hou, Yun-Bing & Zhang, Kun & Yang, Lai & Feng, Ye, 2021. "Life cycle cost assessment of biomass co-firing power plants with CO2 capture and storage considering multiple incentives," Energy Economics, Elsevier, vol. 96(C).
    13. Katharine Sanderson, 2023. "COP28 climate summit signals the end of fossil fuels — but is it enough?," Nature, Nature, vol. 624(7992), pages 484-485, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yun-Long & Kang, Jia-Ning & Liu, Lan-Cui & Wei, Yi-Ming, 2024. "Unveiling the evolution and future prospects: A comprehensive review of low-carbon transition in the coal power industry," Applied Energy, Elsevier, vol. 371(C).
    2. Zhou, Wenlong & Fan, Wenrong & Lan, Rujia & Su, Wenlong & Fan, Jing-Li, 2025. "Retrofitted CCS technologies enhance economy, security, and equity in achieving carbon zero in power sector," Applied Energy, Elsevier, vol. 378(PA).
    3. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    4. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Yang, Chuxiao & Wu, Haitao & Guo, Yunxia & Hao, Yu, 2024. "Possible carbon circular pathway exploration for oil transition under the consideration of energy supply constraint and uncertainty," Ecological Economics, Elsevier, vol. 222(C).
    6. Xizhe Yan & Dan Tong & Yixuan Zheng & Yang Liu & Shaoqing Chen & Xinying Qin & Chuchu Chen & Ruochong Xu & Jing Cheng & Qinren Shi & Dongsheng Zheng & Kebin He & Qiang Zhang & Yu Lei, 2024. "Cost-effectiveness uncertainty may bias the decision of coal power transitions in China," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Wang, Zhaohua & Li, Jingyun & Wang, Bo & Hui, Ng Szu & Lu, Bin & Wang, Can & Xu, Shuling & Zhou, Zixuan & Zhang, Bin & Zheng, Yufeng, 2024. "The decarbonization pathway of power system by high-resolution model under different policy scenarios in China," Applied Energy, Elsevier, vol. 355(C).
    8. Coppens, Léo & Venmans, Frank, 2025. "The welfare properties of climate targets," Ecological Economics, Elsevier, vol. 228(C).
    9. Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
    10. Yang Ou & Christopher Roney & Jameel Alsalam & Katherine Calvin & Jared Creason & Jae Edmonds & Allen A. Fawcett & Page Kyle & Kanishka Narayan & Patrick O’Rourke & Pralit Patel & Shaun Ragnauth & Ste, 2021. "Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Guo, Zhi & Mao, Xianqiang & Lu, Jianhong & Gao, Yubing & Chen, Xing & Zhang, Shining & Ma, Zhiyuan, 2024. "Can a new power system create more employment in China?," Energy, Elsevier, vol. 295(C).
    12. Yang, Mao & Han, Chao & Zhang, Wei & Wang, Bo, 2024. "A short-term power prediction method for wind farm cluster based on the fusion of multi-source spatiotemporal feature information," Energy, Elsevier, vol. 294(C).
    13. Liu, Zefeng & Wang, Chaoyang & Fan, Jianlin & Liu, Ming & Xing, Yong & Yan, Junjie, 2024. "Enhancing the flexibility and stability of coal-fired power plants by optimizing control schemes of throttling high-pressure extraction steam," Energy, Elsevier, vol. 288(C).
    14. Shan, Peng & Zhang, Lei & Jiang, Shiyan & Hou, Xiaochao & Huang, Zhihang, 2024. "Which coal-fired power units in China should be prioritized for decommissioning?," Energy, Elsevier, vol. 308(C).
    15. Lin, Boqiang & Liu, Zhiwei, 2024. "Optimal coal power phase-out pathway considering high renewable energy proportion: A provincial example," Energy Policy, Elsevier, vol. 188(C).
    16. Angelika von Dulong, 2023. "Concentration of asset owners exposed to power sector stranded assets may trigger climate policy resistance," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Ahakwa, Isaac & Tackie, Evelyn Agba & Tackie, Faustina Korkor & Mangudhla, Tinashe & Baig, Jibal & Islam, Sartaj ul & Sarpong, Francis Atta, 2024. "Greening the path to carbon neutrality in the post-COP26 era: Embracing green energy, green innovation, and green human capital," Innovation and Green Development, Elsevier, vol. 3(3).
    18. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    19. J. Rickman & M. Falkenberg & S. Kothari & F. Larosa & M. Grubb & N. Ameli, 2024. "The challenge of phasing-out fossil fuel finance in the banking sector," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Wu, Qingyang & Tan, Chang & Wang, Daoping & Wu, Yongtao & Meng, Jing & Zheng, Heran, 2023. "How carbon emission prices accelerate net zero: Evidence from China's coal-fired power plants," Energy Policy, Elsevier, vol. 177(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55332-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.