IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p35-d1009510.html
   My bibliography  Save this article

Merging Climate Action with Energy Security through CCS—A Multi-Disciplinary Framework for Assessment

Author

Listed:
  • Paweł Gładysz

    (Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Magdalena Strojny

    (Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Łukasz Bartela

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Maciej Hacaga

    (EY Poland, Rondo ONZ 1, 00-124 Warsaw, Poland)

  • Thomas Froehlich

    (Department of War Studies, King’s College London, Strand, London WC2R 2LS, UK)

Abstract

Combining biomass-fired power generation with CO 2 capture and storage leads to so-called negative CO 2 emissions. Negative CO 2 emissions can already be obtained when coal is co-fired with biomass in a power plant with CCS technology. The need for bioenergy with CO 2 capture and storage has been identified as one of the key technologies to keep global warming below 2 °C, as this is one of the large-scale technologies that can remove CO 2 from the atmosphere. According to the definition of bioenergy with CO 2 capture and storage, capturing and storing the CO 2 originating from biomass, along with the biomass binding with carbon from the atmosphere as it grows, will result in net removal of CO 2 from the atmosphere. Another technology option for CO 2 removal from the atmosphere is direct air capture. The idea of a net carbon balance for different systems (including bioenergy with CO 2 capture and storage, and direct air capture) has been presented in the literature. This paper gives a background on carbon dioxide removal solutions—with a focus on ecology, economy, and policy-relevant distinctions in technology. As presented in this paper, the bioenergy with CO 2 capture and storage is superior to direct air capture for countries like Poland in terms of ecological impact. This is mainly due to the electricity generation mix structure (highly dependent on fossil fuels), which shifts the CO 2 emissions to upstream processes, and relatively the low environmental burden for biomass acquisition. Nevertheless, the depletion of non-renewable natural resources for newly built bioenergy power plant with CO 2 capture and storage, and direct air capture with surplus wind energy, has a similar impact below 0.5 GJ 3x /t of negative CO 2 emissions. When the economic factors are a concern, the use of bioenergy with CO 2 capture and storage provides an economic justification at current CO 2 emission allowance prices of around 90 EUR/t CO 2 . Conversely, for direct air capture to be viable, the cost would need to be from 3 to 4.5 times higher.

Suggested Citation

  • Paweł Gładysz & Magdalena Strojny & Łukasz Bartela & Maciej Hacaga & Thomas Froehlich, 2022. "Merging Climate Action with Energy Security through CCS—A Multi-Disciplinary Framework for Assessment," Energies, MDPI, vol. 16(1), pages 1-28, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:35-:d:1009510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/35/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/35/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adriana Marcucci & Socrates Kypreos & Evangelos Panos, 2017. "The road to achieving the long-term Paris targets: energy transition and the role of direct air capture," Climatic Change, Springer, vol. 144(2), pages 181-193, September.
    2. Gładysz, Paweł & Saari, Jussi & Czarnowska, Lucyna, 2020. "Thermo-ecological cost analysis of cogeneration and polygeneration energy systems - Case study for thermal conversion of biomass," Renewable Energy, Elsevier, vol. 145(C), pages 1748-1760.
    3. Bui, Mai & Fajardy, Mathilde & Mac Dowell, Niall, 2017. "Bio-Energy with CCS (BECCS) performance evaluation: Efficiency enhancement and emissions reduction," Applied Energy, Elsevier, vol. 195(C), pages 289-302.
    4. Hagi, Hayato & Neveux, Thibaut & Le Moullec, Yann, 2015. "Efficiency evaluation procedure of coal-fired power plants with CO2 capture, cogeneration and hybridization," Energy, Elsevier, vol. 91(C), pages 306-323.
    5. Kimberly S. Wolske & Kaitlin T. Raimi & Victoria Campbell-Arvai & P. Sol Hart, 2019. "Public support for carbon dioxide removal strategies: the role of tampering with nature perceptions," Climatic Change, Springer, vol. 152(3), pages 345-361, March.
    6. Yang, Bo & Wei, Yi-Ming & Liu, Lan-Cui & Hou, Yun-Bing & Zhang, Kun & Yang, Lai & Feng, Ye, 2021. "Life cycle cost assessment of biomass co-firing power plants with CO2 capture and storage considering multiple incentives," Energy Economics, Elsevier, vol. 96(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mir Sayed Shah Danish, 2023. "AI and Expert Insights for Sustainable Energy Future," Energies, MDPI, vol. 16(8), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
    2. Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    3. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "Pricing in competitive energy supply chains considering government interventions to support CCS under cap-and-trade regulations: A game-theoretic approach," Energy Policy, Elsevier, vol. 179(C).
    4. Ma, Chunyan & Wang, Nan & Chen, Yifeng & Khokarale, Santosh Govind & Bui, Thai Q. & Weiland, Fredrik & Lestander, Torbjörn A. & Rudolfsson, Magnus & Mikkola, Jyri-Pekka & Ji, Xiaoyan, 2020. "Towards negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine," Applied Energy, Elsevier, vol. 279(C).
    5. Arkadiusz Piwowar & Maciej Dzikuć, 2019. "Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review," Energies, MDPI, vol. 12(18), pages 1-15, September.
    6. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Tsupari, Eemeli & Arponen, Timo & Hankalin, Ville & Kärki, Janne & Kouri, Sampo, 2017. "Feasibility comparison of bioenergy and CO2 capture and storage in a large combined heat, power and cooling system," Energy, Elsevier, vol. 139(C), pages 1040-1051.
    8. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    9. Wil Burns & Simon Nicholson, 2017. "Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(4), pages 527-534, December.
    10. Hollands, A.F. & Daly, H., 2023. "Modelling the integrated achievement of clean cooking access and climate mitigation goals: An energy systems optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Frédéric Babonneau & Ahmed Badran & Maroua Benlahrech & Alain Haurie & Maxime Schenckery & Marc Vielle, 2021. "Economic assessment of the development of CO2 direct reduction technologies in long-term climate strategies of the Gulf countries," Climatic Change, Springer, vol. 165(3), pages 1-18, April.
    12. Haijun Zhao & Weichun Ma & Hongjia Dong & Ping Jiang, 2017. "Analysis of Co-Effects on Air Pollutants and CO 2 Emissions Generated by End-of-Pipe Measures of Pollution Control in China’s Coal-Fired Power Plants," Sustainability, MDPI, vol. 9(4), pages 1-19, March.
    13. Gea Hoogendoorn & Bernadette Sütterlin & Michael Siegrist, 2021. "Tampering with Nature: A Systematic Review," Risk Analysis, John Wiley & Sons, vol. 41(1), pages 141-156, January.
    14. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    15. Ünal, Emre & Keeley, Alexander Ryota & Köse, Nezir & Chapman, Andrew & Managi, Shunsuke, 2024. "The nexus between direct air capture technology and CO2 emissions in the transport sector," Applied Energy, Elsevier, vol. 363(C).
    16. Marcucci, Adriana & Panos, Evangelos & Kypreos, Socrates & Fragkos, Panagiotis, 2019. "Probabilistic assessment of realizing the 1.5 °C climate target," Applied Energy, Elsevier, vol. 239(C), pages 239-251.
    17. Ji, Ling & Liang, Xiaolin & Xie, Yulei & Huang, Guohe & Wang, Bing, 2021. "Optimal design and sensitivity analysis of the stand-alone hybrid energy system with PV and biomass-CHP for remote villages," Energy, Elsevier, vol. 225(C).
    18. Dan Yu & Caihong Zhang & Siyi Wang & Lan Zhang, 2023. "Evolutionary Game and Simulation Analysis of Power Plant and Government Behavior Strategies in the Coupled Power Generation Industry of Agricultural and Forestry Biomass and Coal," Energies, MDPI, vol. 16(3), pages 1-19, February.
    19. Elspeth Spence & Emily Cox & Nick Pidgeon, 2021. "Exploring cross-national public support for the use of enhanced weathering as a land-based carbon dioxide removal strategy," Climatic Change, Springer, vol. 165(1), pages 1-18, March.
    20. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Bidding modes for renewable energy considering electricity-carbon integrated market mechanism based on multi-agent hybrid game," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:35-:d:1009510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.