IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v187y2017icp873-885.html
   My bibliography  Save this article

Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant

Author

Listed:
  • Miedema, Jan H.
  • Benders, René M.J.
  • Moll, Henri C.
  • Pierie, Frank

Abstract

Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain scenario, for a Dutch situation. The 60% biomass co-combustion supply chain scenarios show possibilities to reduce emissions up to 48%. The low co-combustion levels are effective toreduce GHG emissions, but the margins are small. Currently co-combustion of pellets is the norm. Co-combustion of combined torrefaction and pelleting (TOP) shows the best results, but is also the most speculative.

Suggested Citation

  • Miedema, Jan H. & Benders, René M.J. & Moll, Henri C. & Pierie, Frank, 2017. "Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant," Applied Energy, Elsevier, vol. 187(C), pages 873-885.
  • Handle: RePEc:eee:appene:v:187:y:2017:i:c:p:873-885
    DOI: 10.1016/j.apenergy.2016.11.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191631618X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    2. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    3. Pierie, F. & Bekkering, J. & Benders, R.M.J. & van Gemert, W.J.Th. & Moll, H.C., 2016. "A new approach for measuring the environmental sustainability of renewable energy production systems: Focused on the modelling of green gas production pathways," Applied Energy, Elsevier, vol. 162(C), pages 131-138.
    4. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Tova Jarnerud & Andrey V. Karasev & Chuan Wang & Frida Bäck & Pär G. Jönsson, 2021. "Utilization of Organic Mixed Biosludge from Pulp and Paper Industries and Green Waste as Carbon Sources in Blast Furnace Hot Metal Production," Sustainability, MDPI, vol. 13(14), pages 1-12, July.
    3. Barta-Rajnai, E. & Wang, L. & Sebestyén, Z. & Barta, Z. & Khalil, R. & Skreiberg, Ø. & Grønli, M. & Jakab, E. & Czégény, Z., 2017. "Comparative study on the thermal behavior of untreated and various torrefied bark, stem wood, and stump of Norway spruce," Applied Energy, Elsevier, vol. 204(C), pages 1043-1054.
    4. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    5. Aviso, K.B. & Sy, C.L. & Tan, R.R. & Ubando, A.T., 2020. "Fuzzy optimization of carbon management networks based on direct and indirect biomass co-firing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Yang, Bo & Wei, Yi-Ming & Liu, Lan-Cui & Hou, Yun-Bing & Zhang, Kun & Yang, Lai & Feng, Ye, 2021. "Life cycle cost assessment of biomass co-firing power plants with CO2 capture and storage considering multiple incentives," Energy Economics, Elsevier, vol. 96(C).
    7. Zhao, Chuanwen & Guo, Yafei & Yan, Junjie & Sun, Jian & Li, Weiling & Lu, Ping, 2019. "Enhanced CO2 sorption capacity of amine-tethered fly ash residues derived from co-firing of coal and biomass blends," Applied Energy, Elsevier, vol. 242(C), pages 453-461.
    8. Yan, Linbo & Wang, Ziqi & Cao, Yang & He, Boshu, 2020. "Comparative evaluation of two biomass direct-fired power plants with carbon capture and sequestration," Renewable Energy, Elsevier, vol. 147(P1), pages 1188-1198.
    9. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Brighenti, M. & Grigiante, M. & Antolini, D. & Di Maggio, R., 2017. "An innovative kinetic model dedicated to mild degradation (torrefaction) of biomasses," Applied Energy, Elsevier, vol. 206(C), pages 475-486.
    11. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    12. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Dynamic modeling and operation optimization for the cold end system of thermal power plants during transient processes," Energy, Elsevier, vol. 145(C), pages 734-746.
    13. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    14. Sangpil Ko & Pasi Lautala, 2018. "Optimal Level of Woody Biomass Co-Firing with Coal Power Plant Considering Advanced Feedstock Logistics System," Agriculture, MDPI, vol. 8(6), pages 1-21, May.
    15. Yu Jiang & Kyeong-Hoon Park & Chung-Hwan Jeon, 2020. "Feasibility Study of Co-Firing of Torrefied Empty Fruit Bunch and Coal through Boiler Simulation," Energies, MDPI, vol. 13(12), pages 1-27, June.
    16. Krzysztof Nowak & Sławomir Rabczak, 2021. "Co-Combustion of Biomass with Coal in Grate Water Boilers at Low Load Boiler Operation," Energies, MDPI, vol. 14(9), pages 1-13, April.
    17. Ding, Yan & Li, Debo & Zhang, Xiaowei & Lv, Maochao & Qin, Shiru & Zhao, Peitao & Guo, Chuwen, 2024. "Research on the co-combustion characteristics and kinetics of rice husk hydrochar with anthracite," Energy, Elsevier, vol. 299(C).
    18. Liang, Wenxing & Yu, Zeting & Bian, Feiyu & Wu, Haonan & Zhang, Kaifan & Ji, Shaobo & Cui, Bo, 2023. "Techno-economic-environmental analysis and optimization of biomass-based SOFC poly-generation system," Energy, Elsevier, vol. 285(C).
    19. Cheng, Zhilong & Wang, Jingyu & Wei, Shangshang & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2017. "Optimization of gaseous fuel injection for saving energy consumption and improving imbalance of heat distribution in iron ore sintering," Applied Energy, Elsevier, vol. 207(C), pages 230-242.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krochmalny, Krystian & Niedzwiecki, Lukasz & Pelińska-Olko, Ewa & Wnukowski, Mateusz & Czajka, Krzysztof & Tkaczuk-Serafin, Monika & Pawlak-Kruczek, Halina, 2020. "Determination of the marker for automation of torrefaction and slow pyrolysis processes – A case study of spherical wood particles," Renewable Energy, Elsevier, vol. 161(C), pages 350-360.
    2. Chen, Wei-Hsin & Kuo, Po-Chih & Liu, Shih-Hsien & Wu, Wei, 2014. "Thermal characterization of oil palm fiber and eucalyptus in torrefaction," Energy, Elsevier, vol. 71(C), pages 40-48.
    3. Agar, David A. & Rudolfsson, Magnus & Lavergne, Simon & Melkior, Thierry & Da Silva Perez, Denilson & Dupont, Capucine & Campargue, Matthieu & Kalén, Gunnar & Larsson, Sylvia H., 2021. "Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing," Renewable Energy, Elsevier, vol. 178(C), pages 766-774.
    4. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    5. Rentizelas, Athanasios A. & Li, Jun, 2016. "Techno-economic and carbon emissions analysis of biomass torrefaction downstream in international bioenergy supply chains for co-firing," Energy, Elsevier, vol. 114(C), pages 129-142.
    6. Mateusz Jackowski & Łukasz Niedźwiecki & Krzysztof Mościcki & Amit Arora & Muhammad Azam Saeed & Krystian Krochmalny & Jakub Pawliczek & Anna Trusek & Magdalena Lech & Jan Skřínský & Jakub Čespiva & J, 2021. "Synergetic Co-Production of Beer Colouring Agent and Solid Fuel from Brewers’ Spent Grain in the Circular Economy Perspective," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    7. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    9. Leonel J. R. Nunes & João C. O. Matias, 2020. "Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production," Sustainability, MDPI, vol. 12(3), pages 1-9, January.
    10. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    11. Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    12. Akbari, Maryam & Oyedun, Adetoyese Olajire & Kumar, Amit, 2020. "Techno-economic assessment of wet and dry torrefaction of biomass feedstock," Energy, Elsevier, vol. 207(C).
    13. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Grigiante, M. & Brighenti, M. & Antolini, D., 2016. "A generalized activation energy equation for torrefaction of hardwood biomasses based on isoconversional methods," Renewable Energy, Elsevier, vol. 99(C), pages 1318-1326.
    15. Sermyagina, Ekaterina & Saari, Jussi & Kaikko, Juha & Vakkilainen, Esa, 2016. "Integration of torrefaction and CHP plant: Operational and economic analysis," Applied Energy, Elsevier, vol. 183(C), pages 88-99.
    16. Jian Cheng & Min Xie & Li Xu & Lei Zhang & Xiaohan Ren, 2021. "Chlorine Release from Co-Pyrolysis of Corn Straw and Lignite in Nitrogen and Oxidative Pyrolysis," Energies, MDPI, vol. 14(24), pages 1-15, December.
    17. Svanberg, Martin & Ellis, Joanne & Lundgren, Joakim & Landälv, Ingvar, 2018. "Renewable methanol as a fuel for the shipping industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1217-1228.
    18. Agbor, Ezinwa & Zhang, Xiaolei & Kumar, Amit, 2014. "A review of biomass co-firing in North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 930-943.
    19. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Gerssen-Gondelach, S.J. & Saygin, D. & Wicke, B. & Patel, M.K. & Faaij, A.P.C., 2014. "Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 964-998.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:187:y:2017:i:c:p:873-885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.