IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p651-d1026147.html
   My bibliography  Save this article

Feasibility of 10 MW Biomass-Fired Power Plant Used Rice Straw in Cambodia

Author

Listed:
  • Sin Sokrethya

    (Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
    Division of Distributive and Business, Electricité du Cambodge, Phnom Penh 12202, Cambodia)

  • Zarif Aminov

    (Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan)

  • Nguyen Van Quan

    (Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan)

  • Tran Dang Xuan

    (Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
    Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan)

Abstract

This study investigates the feasibility of rice straw for energy production in Cambodia. The potential areas for a 10 MW biomass-fired power plant installation are estimated based on rice straw availability displayed in a graphic information system (GIS). The discounted cash flow (DCF) method on the profitability index ( PI ) was executed by Mathlab software, which was used to determine the period of the power plant profitability. The reduction of CO and CO 2 emissions from the proposed rice straw biomass-fired power plant with 10 MW capacity was calculated and compared with the coal-fired power plant and open field burning. Prey Veng, Takeo, and Battambang are potential provinces that have an estimated rice straw source of 804,796 t/annum, 720,040 t/annum, and 603,273 t/annum, respectively. Within a 20-year project, the biomass-fired power plant can reach profitability between six and ten years with the operation of the rice-straw price of 20 USD/t to 40 USD/t. The total energy produced by these potential areas is 1251 GWh/annum, with a CO 2 emission avoidance of 1.06 million t/annum compared to the coal-fired power plant operation. Simultaneously, the emission savings of the biomass-fired power plant compared to open-field burning are 0.61 million t/annum of CO 2 and 0.02 million t/annum of CO in the study site. The findings are prospectively essential for further designing of a small-scale biomass-fired power plant in Cambodia.

Suggested Citation

  • Sin Sokrethya & Zarif Aminov & Nguyen Van Quan & Tran Dang Xuan, 2023. "Feasibility of 10 MW Biomass-Fired Power Plant Used Rice Straw in Cambodia," Energies, MDPI, vol. 16(2), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:651-:d:1026147
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/651/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/651/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H., 2011. "Logistics cost analysis of rice straw for biomass power generation in Thailand," Energy, Elsevier, vol. 36(3), pages 1435-1441.
    2. Mehrpooya, Mehdi & Khalili, Maryam & Sharifzadeh, Mohammad Mehdi Moftakhari, 2018. "Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 869-887.
    3. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
    4. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
    5. Yang, Bo & Wei, Yi-Ming & Liu, Lan-Cui & Hou, Yun-Bing & Zhang, Kun & Yang, Lai & Feng, Ye, 2021. "Life cycle cost assessment of biomass co-firing power plants with CO2 capture and storage considering multiple incentives," Energy Economics, Elsevier, vol. 96(C).
    6. Ramamurthi, Pooja Vijay & Fernandes, Maria Cristina & Nielsen, Per Sieverts & Nunes, Clemente Pedro, 2016. "Utilisation of rice residues for decentralised electricity generation in Ghana: An economic analysis," Energy, Elsevier, vol. 111(C), pages 620-629.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dek Vimean Pheakdey & Nguyen Van Quan & Tran Dang Xuan, 2023. "Economic and Environmental Benefits of Energy Recovery from Municipal Solid Waste in Phnom Penh Municipality, Cambodia," Energies, MDPI, vol. 16(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik & Naqvi, Salman Raza, 2017. "Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis," Applied Energy, Elsevier, vol. 201(C), pages 363-370.
    2. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    3. Hu, Ming-Che & Huang, An-Lei & Wen, Tzai-Hung, 2013. "GIS-based biomass resource utilization for rice straw cofiring in the Taiwanese power market," Energy, Elsevier, vol. 55(C), pages 354-360.
    4. Zhang, Qin & Zhou, Dequn & Zhou, Peng & Ding, Hao, 2013. "Cost Analysis of straw-based power generation in Jiangsu Province, China," Applied Energy, Elsevier, vol. 102(C), pages 785-793.
    5. Chitawo, Maxon L. & Chimphango, Annie F.A., 2017. "A synergetic integration of bioenergy and rice production in rice farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 58-67.
    6. Ramamurthi, Pooja Vijay & Fernandes, Maria Cristina & Nielsen, Per Sieverts & Nunes, Clemente Pedro, 2016. "Utilisation of rice residues for decentralised electricity generation in Ghana: An economic analysis," Energy, Elsevier, vol. 111(C), pages 620-629.
    7. Silalertruksa, Thapat & Gheewala, Shabbir H. & Sagisaka, Masayuki & Yamaguchi, Katsunobu, 2013. "Life cycle GHG analysis of rice straw bio-DME production and application in Thailand," Applied Energy, Elsevier, vol. 112(C), pages 560-567.
    8. Maria Victoria P. Migo-Sumagang & Monet Concepcion Maguyon-Detras & Martin Gummert & Catalino G. Alfafara & Myra G. Borines & Jewel A. Capunitan & Nguyen Van Hung, 2020. "Rice-Straw-Based Heat Generation System Compared to Open-Field Burning and Soil Incorporation of Rice Straw: An Assessment of Energy, GHG Emissions, and Economic Impacts," Sustainability, MDPI, vol. 12(13), pages 1-18, July.
    9. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    10. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    11. Eric, Aleksandar & Dakic, Dragoljub & Nemoda, Stevan & Komatina, Mirko & Repic, Branislav, 2012. "Experimental determination thermo physical characteristics of balled biomass," Energy, Elsevier, vol. 45(1), pages 350-357.
    12. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    13. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
    14. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
    15. Diep, Nhu Quynh & Fujimoto, Shinji & Minowa, Tomoaki & Sakanishi, Kinya & Nakagoshi, Nobukazu, 2012. "Estimation of the potential of rice straw for ethanol production and the optimum facility size for different regions in Vietnam," Applied Energy, Elsevier, vol. 93(C), pages 205-211.
    16. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    17. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    18. Simona Di Fraia & M. Rakib Uddin, 2022. "Energy Recovery from Waste Paper and Deinking Sludge to Support the Demand of the Paper Industry: A Numerical Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    19. Darzi-Naftchali, Abdullah & Motevali, Ali & Keikha, Mahdi, 2022. "The life cycle assessment of subsurface drainage performance under rice-canola cropping system," Agricultural Water Management, Elsevier, vol. 266(C).
    20. Xiaoxian Zhang & Fang Ma, 2015. "Emergy Evaluation of Different Straw Reuse Technologies in Northeast China," Sustainability, MDPI, vol. 7(9), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:651-:d:1026147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.