IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2520-d544849.html
   My bibliography  Save this article

Co-Combustion of Biomass with Coal in Grate Water Boilers at Low Load Boiler Operation

Author

Listed:
  • Krzysztof Nowak

    (Faculty of Civil and Environmental and Architecture, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Sławomir Rabczak

    (Faculty of Civil and Environmental and Architecture, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

Abstract

Environmental protection, and in particular air protection against pollution, is an extremely important element of the global policy of many countries. The problem of air pollution is particularly important in Poland, where the heating market is one of the largest in Europe and is based in 74% on the use of fossil fuels, in particular hard coal. One of the technological solutions for the implementation of cleaner fuels is the co-combustion of coal and biomass. This process enables the reduction of harmful pollutants such as CO 2 , SO 2 , and can be implemented in existing boilers. Heating boilers achieve the highest design efficiency during optimal load at the level of 85–95% of nominal power. Under such conditions, heat production is most efficient. During operation, boilers are often started, extinguished or run below rated output, resulting in increased emissions. This publication presents the results of measurements of efficiency and concentrations of pollutants in the WR water boiler during operation below the technical minimum. Hard coal was cofired in the boiler with biomass of wood origin. It was noted that the amount of biomass had a significant impact on the boiler efficiency and pollutant emission. Based on the research, it was also noted that it was possible to make a qualitative prediction of these parameters. The obtained results are an introduction to a deeper analysis and further research on the correlation between the amount of biomass and boiler power and the efficiency and concentration of pollutants.

Suggested Citation

  • Krzysztof Nowak & Sławomir Rabczak, 2021. "Co-Combustion of Biomass with Coal in Grate Water Boilers at Low Load Boiler Operation," Energies, MDPI, vol. 14(9), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2520-:d:544849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2520/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agbor, Ezinwa & Zhang, Xiaolei & Kumar, Amit, 2014. "A review of biomass co-firing in North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 930-943.
    2. Hauke Jan & Kossowski Tomasz, 2011. "Comparison of Values of Pearson's and Spearman's Correlation Coefficients on the Same Sets of Data," Quaestiones Geographicae, Sciendo, vol. 30(2), pages 87-93, June.
    3. Yan Xu & Kun Yang & Jiahui Zhou & Guohao Zhao, 2020. "Coal-Biomass Co-Firing Power Generation Technology: Current Status, Challenges and Policy Implications," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    4. Miedema, Jan H. & Benders, René M.J. & Moll, Henri C. & Pierie, Frank, 2017. "Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant," Applied Energy, Elsevier, vol. 187(C), pages 873-885.
    5. Huculak, Maciej & Jarczewski, Wojciech & Dej, Magdalena, 2015. "Economic aspects of the use of deep geothermal heat in district heating in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 29-40.
    6. Emmanouil Karampinis & Panagiotis Grammelis & Michalis Agraniotis & Ioannis Violidakis & Emmanuel Kakaras, 2014. "Co-firing of biomass with coal in thermal power plants: technology schemes, impacts, and future perspectives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 384-399, July.
    7. Roni, Mohammad S. & Chowdhury, Sudipta & Mamun, Saleh & Marufuzzaman, Mohammad & Lein, William & Johnson, Samuel, 2017. "Biomass co-firing technology with policies, challenges, and opportunities: A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1089-1101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danuta Proszak-Miąsik & Wacław Jarecki & Krzysztof Nowak, 2022. "Selected Parameters of Oat Straw as an Alternative Energy Raw Material," Energies, MDPI, vol. 15(1), pages 1-14, January.
    2. Paweł Kut & Katarzyna Pietrucha-Urbanik & Barbara Tchórzewska-Cieślak, 2021. "Reliability-Oriented Design of a Solar-PV Deployments," Energies, MDPI, vol. 14(20), pages 1-14, October.
    3. Igliński, Bartłomiej & Pietrzak, Michał Bernard & Kiełkowska, Urszula & Skrzatek, Mateusz & Kumar, Gopalakrishnan & Piechota, Grzegorz, 2022. "The assessment of renewable energy in Poland on the background of the world renewable energy sector," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aviso, K.B. & Sy, C.L. & Tan, R.R. & Ubando, A.T., 2020. "Fuzzy optimization of carbon management networks based on direct and indirect biomass co-firing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Yang, Bo & Wei, Yi-Ming & Liu, Lan-Cui & Hou, Yun-Bing & Zhang, Kun & Yang, Lai & Feng, Ye, 2021. "Life cycle cost assessment of biomass co-firing power plants with CO2 capture and storage considering multiple incentives," Energy Economics, Elsevier, vol. 96(C).
    4. Zhang, Yun-Long & Liu, Lan-Cui & Kang, Jia-Ning & Peng, Song & Mi, Zhifu & Liao, Hua & Wei, Yi-Ming, 2024. "Economic feasibility assessment of coal-biomass co-firing power generation technology," Energy, Elsevier, vol. 296(C).
    5. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    7. Huang, Qian & Xu, Jiuping, 2023. "Carbon tax revenue recycling for biomass/coal co-firing using Stackelberg game: A case study of Jiangsu province, China," Energy, Elsevier, vol. 272(C).
    8. Mohd Idris, Muhammad Nurariffudin & Hashim, Haslenda & Leduc, Sylvain & Yowargana, Ping & Kraxner, Florian & Woon, Kok Sin, 2021. "Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty," Energy, Elsevier, vol. 232(C).
    9. Truong, An Ha & Ha-Duong, Minh & Tran, Hoang Anh, 2022. "Economics of co-firing rice straw in coal power plants in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    11. Clancy, John Matthew & Curtis, John & Ó’Gallachóir, Brian, 2018. "Modelling national policy making to promote bioenergy in heat, transport and electricity to 2030 – Interactions, impacts and conflicts," Energy Policy, Elsevier, vol. 123(C), pages 579-593.
    12. Agumas Alamirew Mebratu, 2024. "Theoretical foundations of voluntary tax compliance: evidence from a developing country," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-8, December.
    13. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    14. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    15. Alex Bara & Pierre LeRoux, 2018. "Technology, Financial Innovations and Bank Behavior in a Low Income Country," Journal of Economics and Behavioral Studies, AMH International, vol. 10(4), pages 221-234.
    16. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    17. Javier García López & Raffaele Sisto & Javier Benayas & Álvaro de Juanes & Julio Lumbreras & Carlos Mataix, 2021. "Assessment of the Results and Methodology of the Sustainable Development Index for Spanish Cities," Sustainability, MDPI, vol. 13(11), pages 1-29, June.
    18. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    19. Adriana Gómez-Cabrera & Amalia Sanz-Benlloch & Laura Montalban-Domingo & Jose Luis Ponz-Tienda & Eugenio Pellicer, 2020. "Identification of Factors Affecting the Performance of Rural Road Projects in Colombia," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    20. Krzysztof Nowak & Sławomir Rabczak, 2020. "Technical and Economic Analysis of the External Surface Heating System on the Example of a Car Park," Energies, MDPI, vol. 13(24), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2520-:d:544849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.