IDEAS home Printed from https://ideas.repec.org/p/ete/kbiper/538113.html
   My bibliography  Save this paper

Commodity dynamics: a sparse multi-class approach

Author

Listed:
  • Luca Barbaglia
  • Ines Wilms
  • Christophe Croux

Abstract

The correct understanding of commodity price dynamics can bring relevant improvements in terms of policy formulation both for developing and developed countries. Agricultural, metal and energy commodity prices might depend on each other: although we expect few important effects among the total number of possible ones, some price effects among different commodities might still be substantial. Moreover, the increasing integration of the world economy suggests that these effects should be comparable for different markets. This paper introduces a sparse estimator of the Multi-class Vector AutoRegressive model to detect common price effects between a large number of commodities, for different markets or investment portfolios. In a first application, we consider agricultural and metal commodities for three different markets. We show a large prevalence of effects involving metal commodities in the Chinese and Indian markets, and the existence of asymmetric price effects. In a second application, we analyze commodity prices for five different investment portfolios, and highlight the existence of important effects from energy to agricultural commodities. The relevance of biofuels is hereby confirmed. Overall, we find stronger similarities in commodity price effects among portfolios than among markets.

Suggested Citation

  • Luca Barbaglia & Ines Wilms & Christophe Croux, 2016. "Commodity dynamics: a sparse multi-class approach," Working Papers of Department of Decision Sciences and Information Management, Leuven 538113, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
  • Handle: RePEc:ete:kbiper:538113
    as

    Download full text from publisher

    File URL: https://lirias.kuleuven.be/retrieve/383146
    File Function: Commodity dynamics: a sparse multi-class approach
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Paul Cashin & C. John McCDermott, 2002. "The Long-Run Behavior of Commodity Prices: Small Trends and Big Variability," IMF Staff Papers, Palgrave Macmillan, vol. 49(2), pages 1-2.
    2. Yang, Jian & Bessler, David A. & Leatham, David J., 2000. "The Law Of One Price: Developed And Developing Country Market Integration," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 32(3), pages 1-12, December.
    3. Renee Fry & Callum Jones & Christopher Kent, 2010. "Inflation in an Era of Relative Pirce Shocks," CAMA Working Papers 2010-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    5. Rossen, Anja, 2015. "What are metal prices like? Co-movement, price cycles and long-run trends," Resources Policy, Elsevier, vol. 45(C), pages 255-276.
    6. Angus Deaton, 1999. "Commodity Prices and Growth in Africa," Journal of Economic Perspectives, American Economic Association, vol. 13(3), pages 23-40, Summer.
    7. Jeffrey A Frankel & Andrew K Rose, 2010. "Determinants of Agricultural and Mineral Commodity Prices," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.
    8. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-1189, December.
    9. Belke, Ansgar & Bordon, Ingo G. & Volz, Ulrich, 2013. "Effects of Global Liquidity on Commodity and Food Prices," World Development, Elsevier, vol. 44(C), pages 31-43.
    10. Serra, Teresa, 2011. "Volatility spillovers between food and energy markets: A semiparametric approach," Energy Economics, Elsevier, vol. 33(6), pages 1155-1164.
    11. Michael J. Roberts & Wolfram Schlenker, 2013. "Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate," American Economic Review, American Economic Association, vol. 103(6), pages 2265-2295, October.
    12. Anthony N. Rezitis, 2015. "The relationship between agricultural commodity prices, crude oil prices and US dollar exchange rates: a panel VAR approach and causality analysis," International Review of Applied Economics, Taylor & Francis Journals, vol. 29(3), pages 403-434, May.
    13. Robert S. Pindyck, 2004. "Volatility and commodity price dynamics," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1029-1047, November.
    14. Chen, Sheng-Tung & Kuo, Hsiao-I & Chen, Chi-Chung, 2010. "Modeling the relationship between the oil price and global food prices," Applied Energy, Elsevier, vol. 87(8), pages 2517-2525, August.
    15. Wallace E. Tyner, 2010. "The integration of energy and agricultural markets," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 193-201, November.
    16. Robert S. Pindyck, 2001. "The Dynamics of Commodity Spot and Futures Markets: A Primer," The Energy Journal, , vol. 22(3), pages 1-29, July.
    17. Kelvin Balcombe & George Rapsomanikis, 2008. "Bayesian Estimation and Selection of Nonlinear Vector Error Correction Models: The Case of the Sugar-Ethanol-Oil Nexus in Brazil," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(3), pages 658-668.
    18. Isard, Peter, 1977. "How Far Can We Push the "Law of One Price"?," American Economic Review, American Economic Association, vol. 67(5), pages 942-948, December.
    19. Sari, Ramazan & Hammoudeh, Shawkat & Soytas, Ugur, 2010. "Dynamics of oil price, precious metal prices, and exchange rate," Energy Economics, Elsevier, vol. 32(2), pages 351-362, March.
    20. Klotz, Philipp & Lin, Tsoyu Calvin & Hsu, Shih-Hsun, 2014. "Global commodity prices, economic activity and monetary policy: The relevance of China," Resources Policy, Elsevier, vol. 42(C), pages 1-9.
    21. James O. Bukenya & Walter C. Labys, 2005. "Price Convergence on World Commodity Markets: Fact or Fiction?," International Regional Science Review, , vol. 28(3), pages 302-329, July.
    22. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
    23. Jain, Anshul & Ghosh, Sajal, 2013. "Dynamics of global oil prices, exchange rate and precious metal prices in India," Resources Policy, Elsevier, vol. 38(1), pages 88-93.
    24. Nazlioglu, Saban & Erdem, Cumhur & Soytas, Ugur, 2013. "Volatility spillover between oil and agricultural commodity markets," Energy Economics, Elsevier, vol. 36(C), pages 658-665.
    25. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    26. Akram, Q. Farooq, 2009. "Commodity prices, interest rates and the dollar," Energy Economics, Elsevier, vol. 31(6), pages 838-851, November.
    27. Anthony N. Rezitis, 2015. "Empirical Analysis of Agricultural Commodity Prices, Crude Oil Prices and US Dollar Exchange Rates using Panel Data Econometric Methods," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 851-868.
    28. Teresa Serra & David Zilberman & José M. Gil & Barry K. Goodwin, 2011. "Nonlinearities in the U.S. corn‐ethanol‐oil‐gasoline price system," Agricultural Economics, International Association of Agricultural Economists, vol. 42(1), pages 35-45, January.
    29. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    30. Hassouneh, Islam & Serra, Teresa & Goodwin, Barry K. & Gil, José M., 2012. "Non-parametric and parametric modeling of biodiesel, sunflower oil, and crude oil price relationships," Energy Economics, Elsevier, vol. 34(5), pages 1507-1513.
    31. Chen, Peng, 2015. "Global oil prices, macroeconomic fundamentals and China's commodity sector comovements," Energy Policy, Elsevier, vol. 87(C), pages 284-294.
    32. Patrick Danaher & Pei Wang & Daniela M. Witten, 2014. "The joint graphical lasso for inverse covariance estimation across multiple classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 373-397, March.
    33. Śmiech, Sławomir & Papież, Monika & Dąbrowski, Marek A., 2015. "Does the euro area macroeconomy affect global commodity prices? Evidence from a SVAR approach," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 485-503.
    34. Robert Tibshirani & Jacob Bien & Jerome Friedman & Trevor Hastie & Noah Simon & Jonathan Taylor & Ryan J. Tibshirani, 2012. "Strong rules for discarding predictors in lasso‐type problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(2), pages 245-266, March.
    35. Nazlioglu, Saban & Soytas, Ugur, 2012. "Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 34(4), pages 1098-1104.
    36. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chang & Sun, Xiaolei & Wang, Jun & Li, Jianping & Chen, Jianming, 2021. "Multiscale information transmission between commodity markets: An EMD-Based transfer entropy network," Research in International Business and Finance, Elsevier, vol. 55(C).
    2. Jiang, Yonghong & Jiang, Cheng & Nie, He & Mo, Bin, 2019. "The time-varying linkages between global oil market and China's commodity sectors: Evidence from DCC-GJR-GARCH analyses," Energy, Elsevier, vol. 166(C), pages 577-586.
    3. Khalfaoui, Rabeh & Baumöhl, Eduard & Sarwar, Suleman & Výrost, Tomáš, 2021. "Connectedness between energy and nonenergy commodity markets: Evidence from quantile coherency networks," Resources Policy, Elsevier, vol. 74(C).
    4. Asadi, Mehrad & Roudari, Soheil & Tiwari, Aviral Kumar & Roubaud, David, 2023. "Scrutinizing commodity markets by quantile spillovers: A case study of the Australian economy," Energy Economics, Elsevier, vol. 118(C).
    5. Hailan Pan & Xiaohuan Yang, 2021. "Fast clustering algorithm of commodity association big data sparse network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 667-674, August.
    6. Jiang, Yonghong & Fu, Yuyuan & Ruan, Weihua, 2019. "Risk spillovers and portfolio management between precious metal and BRICS stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Sang Hoon & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2019. "Exploring the time-frequency connectedness and network among crude oil and agriculture commodities V1," Energy Economics, Elsevier, vol. 84(C).
    2. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    3. Davide, Marinella & Vesco, Paola, 2016. "Alternative Approaches for Rating INDCs: a Comparative Analysis," MITP: Mitigation, Innovation and Transformation Pathways 232716, Fondazione Eni Enrico Mattei (FEEM).
    4. Behmiri, Niaz Bashiri & Manera, Matteo & Nicolini, Marcella, 2016. "Understanding Dynamic Conditional Correlations between Commodities Futures Markets," ESP: Energy Scenarios and Policy 232223, Fondazione Eni Enrico Mattei (FEEM).
    5. Cheng, Sheng & Cao, Yan, 2019. "On the relation between global food and crude oil prices: An empirical investigation in a nonlinear framework," Energy Economics, Elsevier, vol. 81(C), pages 422-432.
    6. Subrata K. Mitra & Debdatta Pal, 2024. "Role of Crude Oil in Determining the Price of Corn in the United States: A Non-parametric Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(2), pages 395-420, June.
    7. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).
    8. Albulescu, Claudiu Tiberiu & Tiwari, Aviral Kumar & Ji, Qiang, 2020. "Copula-based local dependence among energy, agriculture and metal commodities markets," Energy, Elsevier, vol. 202(C).
    9. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Ahmed Ghorbel & Wajdi Hamma & Anis Jarboui, 2017. "Dependence between oil and commodities markets using time-varying Archimedean copulas and effectiveness of hedging strategies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1509-1542, July.
    11. Claudiu Albulescu & Aviral Tiwari & Qiang Ji, 2020. "Copula-based local dependence between energy, agriculture and metal commodity markets," Papers 2003.04007, arXiv.org.
    12. Chen, Peng, 2015. "Global oil prices, macroeconomic fundamentals and China's commodity sector comovements," Energy Policy, Elsevier, vol. 87(C), pages 284-294.
    13. Ahmadi, Maryam & Bashiri Behmiri, Niaz & Manera, Matteo, 2016. "How is volatility in commodity markets linked to oil price shocks?," Energy Economics, Elsevier, vol. 59(C), pages 11-23.
    14. Rossen, Anja, 2015. "What are metal prices like? Co-movement, price cycles and long-run trends," Resources Policy, Elsevier, vol. 45(C), pages 255-276.
    15. Nazlioglu, Saban & Erdem, Cumhur & Soytas, Ugur, 2013. "Volatility spillover between oil and agricultural commodity markets," Energy Economics, Elsevier, vol. 36(C), pages 658-665.
    16. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    17. Luca Barbaglia & Christophe Croux & Ines Wilms, 2017. "Volatility spillovers and heavy tails: a large t-Vector AutoRegressive approach," Working Papers of Department of Decision Sciences and Information Management, Leuven 590528, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
    18. Hanif, Waqas & Areola Hernandez, Jose & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2021. "Tail dependence risk and spillovers between oil and food prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 195-209.
    19. Pal, Debdatta & Mitra, Subrata K., 2019. "Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops," Economic Modelling, Elsevier, vol. 82(C), pages 453-466.
    20. Vasyl Golosnoy & Anja Rossen, 2018. "Modeling dynamics of metal price series via state space approach with two common factors," Empirical Economics, Springer, vol. 54(4), pages 1477-1501, June.

    More about this item

    Keywords

    Commodity prices; Multi-class estimation; Vector AutoRegressive model;
    All these keywords.

    JEL classification:

    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ete:kbiper:538113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: library EBIB (email available below). General contact details of provider: https://feb.kuleuven.be/KBI .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.