IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v134y2024ics014098832400330x.html
   My bibliography  Save this article

Dynamic bargaining game DEA carbon emissions abatement allocation and the Nash equilibrium

Author

Listed:
  • Chu, Junfei
  • Hou, Tianteng
  • Li, Feng
  • Yuan, Zhe

Abstract

Allocating carbon emissions abatement (CEA) is crucial for reducing carbon footprint of organizations (or decision-making units, DMUs) and mitigating global warming. However, discrepancies often arise among DMUs regarding CEA allocation. This study introduces a dynamic bargaining game approach to address the issue under the nonparametric production frontier analysis framework. Our approach employs an iterative process, allowing each DMU to propose its individual preferred CEA allocation proposal in each iteration. Subsequently, dynamic negotiations among the DMUs occur, leading to the eventual consensus on the CEA allocation result. Our theoretical analysis demonstrates that, at the end of the dynamic bargaining game, all DMUs will converge on the same CEA allocation result, termed as the consensus CEA allocation result. This agreement is reached despite each DMU customizing its individual CEA allocation proposal to suit its own interests. Moreover, we prove that this consensus CEA allocation result represents a Nash equilibrium solution, thereby ensuring its stability and acceptance among all DMUs. Finally, we provide a simple numerical example and a case study of CEA allocation across 27 European Union countries to illustrate the usefulness of our approach and compare it with prior CEA allocation approaches.

Suggested Citation

  • Chu, Junfei & Hou, Tianteng & Li, Feng & Yuan, Zhe, 2024. "Dynamic bargaining game DEA carbon emissions abatement allocation and the Nash equilibrium," Energy Economics, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:eneeco:v:134:y:2024:i:c:s014098832400330x
    DOI: 10.1016/j.eneco.2024.107622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832400330X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qingxian An & Kefan Zhu & Beibei Xiong & Zhiyang Shen, 2023. "Carbon resource reallocation with emission quota in carbon emission trading system," Post-Print hal-03974850, HAL.
    2. Lawrence H. Goulder & Ian W.H. Parry & Roberton C. Williams III & Dallas Burtraw, 2002. "The Cost-Effectiveness of Alternative Instruments for Environmental Protection in a Second-Best Setting," Chapters, in: Lawrence H. Goulder (ed.), Environmental Policy Making in Economies with Prior Tax Distortions, chapter 27, pages 523-554, Edward Elgar Publishing.
    3. Xiong, Ling & Shen, Bo & Qi, Shaozhou & Price, Lynn & Ye, Bin, 2017. "The allowance mechanism of China’s carbon trading pilots: A comparative analysis with schemes in EU and California," Applied Energy, Elsevier, vol. 185(P2), pages 1849-1859.
    4. Bouzidis, Thanasis & Karagiannis, Giannis, 2022. "An alternative ranking of DMUs performance for the ZSG-DEA model," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    5. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Lins, Marcos P. Estellita & Gomes, Eliane G. & Soares de Mello, Joao Carlos C. B. & Soares de Mello, Adelino Jose R., 2003. "Olympic ranking based on a zero sum gains DEA model," European Journal of Operational Research, Elsevier, vol. 148(2), pages 312-322, July.
    8. Robert Becker & Subir Chakrabarti, 2005. "Satisficing behavior, Brouwer’s Fixed Point Theorem and Nash Equilibrium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(1), pages 63-83, July.
    9. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    10. Lozano, S. & Villa, G. & Brännlund, R., 2009. "Centralised reallocation of emission permits using DEA," European Journal of Operational Research, Elsevier, vol. 193(3), pages 752-760, March.
    11. Thomas Stoerk & Daniel J. Dudek & Jia Yang, 2019. "China’s national carbon emissions trading scheme: lessons from the pilot emission trading schemes, academic literature, and known policy details," Climate Policy, Taylor & Francis Journals, vol. 19(4), pages 472-486, April.
    12. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    13. Misato Sato, Karsten Neuhoff, Vera Zipperer, 2017. "Benchmarks for emissions trading – general principles for emissions scope," GRI Working Papers 321, Grantham Research Institute on Climate Change and the Environment.
    14. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    15. Liang Liang & Jie Wu & Wade D. Cook & Joe Zhu, 2008. "The DEA Game Cross-Efficiency Model and Its Nash Equilibrium," Operations Research, INFORMS, vol. 56(5), pages 1278-1288, October.
    16. Karsten Neuhoff & Kim Keats Martinez & Misato Sato, 2006. "Allocation, incentives and distortions: the impact of EU ETS emissions allowance allocations to the electricity sector," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 73-91, January.
    17. Xie, Qiwei & Hu, Ping & Jiang, An & Li, Yongjun, 2019. "Carbon emissions allocation based on satisfaction perspective and data envelopment analysis," Energy Policy, Elsevier, vol. 132(C), pages 254-264.
    18. Chu, Junfei & Zhu, Joe, 2021. "Production scale-based two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 294(1), pages 283-294.
    19. Carolyn Fischer & Alan K. Fox, 2007. "Output-Based Allocation of Emissions Permits for Mitigating Tax and Trade Interactions," Land Economics, University of Wisconsin Press, vol. 83(4), pages 575-599.
    20. Yue-Jun Zhang & Jun-Fang Hao, 2017. "Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles," Annals of Operations Research, Springer, vol. 255(1), pages 117-140, August.
    21. Yu, Shasha & Lei, Ming & Deng, Honghui, 2023. "Evaluation to fixed-sum-outputs DMUs by non-oriented equilibrium efficient frontier DEA approach with Nash bargaining-based selection," Omega, Elsevier, vol. 115(C).
    22. Yang, Mian & Hou, Yaru & Ji, Qiang & Zhang, Dayong, 2020. "Assessment and optimization of provincial CO2 emission reduction scheme in China: An improved ZSG-DEA approach," Energy Economics, Elsevier, vol. 91(C).
    23. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    24. Yongjun Li & Wenhui Hou & Weiwei Zhu & Feng Li & Liang Liang, 2021. "Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs," Annals of Operations Research, Springer, vol. 304(1), pages 233-261, September.
    25. Jie Wu & Qingyuan Zhu & Junfei Chu & Qingxian An & Liang Liang, 2016. "A DEA-based approach for allocation of emission reduction tasks," International Journal of Production Research, Taylor & Francis Journals, vol. 54(18), pages 5618-5633, September.
    26. Feng Li & Shiqi Ye & Julien Chevallier & Jinyu Zhang & Gang Kou, 2023. "Provincial energy and environmental efficiency analysis of Chinese transportation industry with the fixed-sum carbon emission constraint," Post-Print halshs-04250350, HAL.
    27. Yang, Fan & Lee, Hyoungsuk, 2022. "An innovative provincial CO2 emission quota allocation scheme for Chinese low-carbon transition," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    28. Jiasen Sun & Yelin Fu & Xiang Ji & Ray Y. Zhong, 2017. "Allocation of emission permits using DEA-game-theoretic model," Operational Research, Springer, vol. 17(3), pages 867-884, October.
    29. Feng Li & Ali Emrouznejad & Guo-liang Yang & Yongjun Li, 2020. "Carbon emission abatement quota allocation in Chinese manufacturing industries: An integrated cooperative game data envelopment analysis approach," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(8), pages 1259-1288, August.
    30. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    31. Mahdiloo, Mahdi & Ngwenyama, Ojelanki & Scheepers, Rens & Tamaddoni, Ali, 2018. "Managing emissions allowances of electricity producers to maximize CO2 abatement: DEA models for analyzing emissions and allocating emissions allowances," International Journal of Production Economics, Elsevier, vol. 205(C), pages 244-255.
    32. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.
    33. Min Yang & Qingxian An & Tao Ding & Pengzhen Yin & Liang Liang, 2019. "Carbon emission allocation in China based on gradually efficiency improvement and emission reduction planning principle," Annals of Operations Research, Springer, vol. 278(1), pages 123-139, July.
    34. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    35. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    36. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    37. Li, Yongjun & Yang, Min & Chen, Ya & Dai, Qianzhi & Liang, Liang, 2013. "Allocating a fixed cost based on data envelopment analysis and satisfaction degree," Omega, Elsevier, vol. 41(1), pages 55-60.
    38. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohong Liu & Qingchun Meng & Ruiqi Sun & Xiangwei Zhang, 2024. "A Novel Centralized Allocation Data Envelopment Analysis Model for Carbon Emission Allocation Under a Heterogeneous Abatement Cost: Application Within the Chinese Industrial Sector," Mathematics, MDPI, vol. 12(21), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongjun Li & Wenhui Hou & Weiwei Zhu & Feng Li & Liang Liang, 2021. "Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs," Annals of Operations Research, Springer, vol. 304(1), pages 233-261, September.
    2. Amirteimoori, Alireza & Kazemi Matin, Reza & Yadollahi, Amir Hossein, 2024. "Stochastic resource reallocation in two-stage production processes with undesirable outputs: An empirical study on the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    3. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    4. Jiasen Sun & Guo Li, 2022. "Optimizing emission reduction task sharing: technology and performance perspectives," Annals of Operations Research, Springer, vol. 316(1), pages 581-602, September.
    5. Jiasen Sun & Yelin Fu & Xiang Ji & Ray Y. Zhong, 2017. "Allocation of emission permits using DEA-game-theoretic model," Operational Research, Springer, vol. 17(3), pages 867-884, October.
    6. Xie, Qiwei & Xu, Qifan & Zhu, Da & Rao, Kaifeng & Dai, Qianzhi, 2020. "Fair allocation of wastewater discharge permits based on satisfaction criteria using data envelopment analysis," Utilities Policy, Elsevier, vol. 66(C).
    7. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    8. Xi Jin & Bin Zou & Chan Wang & Kaifeng Rao & Xiaowen Tang, 2019. "Carbon Emission Allocation in a Chinese Province-Level Region Based on Two-Stage Network Structures," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    9. Chu, Junfei & Dong, Yanhua & Yuan, Zhe, 2024. "An improved equilibrium efficient frontier data envelopment analysis approach for evaluating decision-making units with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 318(2), pages 592-604.
    10. Anyu Yu & Hao Zhang & Hu-chen Liu & Yu Shi & Weilong Bi, 2024. "Dynamic centralized resource allocation approach with contextual impacts: analyzing Chinese carbon allocation plans," Annals of Operations Research, Springer, vol. 341(1), pages 451-483, October.
    11. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    12. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    13. Margaréta Halická & Mária Trnovská, 2018. "Negative features of hyperbolic and directional distance models for technologies with undesirable outputs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 887-907, December.
    14. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    15. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    16. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    17. Cherchye, Laurens & Rock, Bram De & Walheer, Barnabé, 2015. "Multi-output efficiency with good and bad outputs," European Journal of Operational Research, Elsevier, vol. 240(3), pages 872-881.
    18. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    19. Xiang Ji & Jiasen Sun & Qunwei Wang & Qianqian Yuan, 2019. "Revealing Energy Over-Consumption and Pollutant Over-Emission Behind GDP: A New Multi-criteria Sustainable Measure," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1391-1421, December.
    20. Benjamin Hampf, 2018. "Measuring inefficiency in the presence of bad outputs: Does the disposability assumption matter?," Empirical Economics, Springer, vol. 54(1), pages 101-127, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:134:y:2024:i:c:s014098832400330x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.