IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v341y2024i1d10.1007_s10479-023-05606-w.html
   My bibliography  Save this article

Dynamic centralized resource allocation approach with contextual impacts: analyzing Chinese carbon allocation plans

Author

Listed:
  • Anyu Yu

    (Zhejiang Gongshang University)

  • Hao Zhang

    (University of Shanghai for Science and Technology)

  • Hu-chen Liu

    (Tongji University)

  • Yu Shi

    (Drake University)

  • Weilong Bi

    (Zhejiang Gongshang University)

Abstract

Setting carbon abatement quota is a strategy to abate carbon emissions. Practically, the allocation mechanism of carbon abatement quota is always formulated and implemented as a dynamic process, affected by the outside production environment. Such formulations have seldom been addressed in the literature. Unlike existing studies, this study proposes a novel DEA allocation model to measure centralized resource allocation in a dynamic process, and the model is in a multiplier form, which reflects the impact of allocation on the technology frontier. Meanwhile, contextual impacts are also incorporated into the dynamic allocation model. Empirically, the carbon allocation of China’s industrial systems is examined at macro and micro levels. From a dynamic perspective, diverse carbon abatement amounts and carbon intensities are identified for the industrial producers in allocation. We find that the dynamic modeling has affected the annual carbon allocation results, and observe that contextual impacts smooth the annual changes in carbon abatement amounts. Additionally, contextual factors adjust the industrial carbon abatement tasks by transferring some abatement burden from the eastern and western areas to the central area, and from small and micro firms to large and medium firms. Besides, contextual factors affect the robustness of the allocation measurement, by reducing the gaps of allocation results among DMUs, making the allocation results less stable corresponding to upper bound changes.

Suggested Citation

  • Anyu Yu & Hao Zhang & Hu-chen Liu & Yu Shi & Weilong Bi, 2024. "Dynamic centralized resource allocation approach with contextual impacts: analyzing Chinese carbon allocation plans," Annals of Operations Research, Springer, vol. 341(1), pages 451-483, October.
  • Handle: RePEc:spr:annopr:v:341:y:2024:i:1:d:10.1007_s10479-023-05606-w
    DOI: 10.1007/s10479-023-05606-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05606-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05606-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kangjuan Lv & Anyu Yu & Yiwen Bian, 2017. "Regional energy efficiency and its determinants in China during 2001–2010: a slacks-based measure and spatial econometric analysis," Journal of Productivity Analysis, Springer, vol. 47(1), pages 65-81, February.
    2. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    3. Fang, Lei, 2013. "A generalized DEA model for centralized resource allocation," European Journal of Operational Research, Elsevier, vol. 228(2), pages 405-412.
    4. Chu, Junfei & Wu, Jie & Chu, Chengbin & Zhang, Tinglong, 2020. "DEA-based fixed cost allocation in two-stage systems: Leader-follower and satisfaction degree bargaining game approaches," Omega, Elsevier, vol. 94(C).
    5. Du, Juan & Cook, Wade D. & Liang, Liang & Zhu, Joe, 2014. "Fixed cost and resource allocation based on DEA cross-efficiency," European Journal of Operational Research, Elsevier, vol. 235(1), pages 206-214.
    6. Beasley, J. E., 2003. "Allocating fixed costs and resources via data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 198-216, May.
    7. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    8. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    9. Liao, Nuo & He, Yong, 2018. "Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model," Energy, Elsevier, vol. 158(C), pages 782-795.
    10. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    11. Yu, Anyu & You, Jianxin & Rudkin, Simon & Zhang, Hao, 2019. "Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis," Applied Energy, Elsevier, vol. 233, pages 232-243.
    12. Yue-Jun Zhang & Jun-Fang Hao, 2017. "Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles," Annals of Operations Research, Springer, vol. 255(1), pages 117-140, August.
    13. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    14. Lins, Marcos P. Estellita & Gomes, Eliane G. & Soares de Mello, Joao Carlos C. B. & Soares de Mello, Adelino Jose R., 2003. "Olympic ranking based on a zero sum gains DEA model," European Journal of Operational Research, Elsevier, vol. 148(2), pages 312-322, July.
    15. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    16. Cayir Ervural, Beyzanur & Zaim, Selim & Delen, Dursun, 2018. "A two-stage analytical approach to assess sustainable energy efficiency," Energy, Elsevier, vol. 164(C), pages 822-836.
    17. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    18. Lozano, S. & Villa, G. & Brännlund, R., 2009. "Centralised reallocation of emission permits using DEA," European Journal of Operational Research, Elsevier, vol. 193(3), pages 752-760, March.
    19. Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.
    20. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    21. He, Weijun & Yang, Yi & Wang, Zhaohua & Zhu, Joe, 2018. "Estimation and allocation of cost savings from collaborative CO2 abatement in China," Energy Economics, Elsevier, vol. 72(C), pages 62-74.
    22. Wen, Wen & Zhou, P. & Zhang, Fuqiang, 2018. "Carbon emissions abatement: Emissions trading vs consumer awareness," Energy Economics, Elsevier, vol. 76(C), pages 34-47.
    23. Mahdiloo, Mahdi & Ngwenyama, Ojelanki & Scheepers, Rens & Tamaddoni, Ali, 2018. "Managing emissions allowances of electricity producers to maximize CO2 abatement: DEA models for analyzing emissions and allocating emissions allowances," International Journal of Production Economics, Elsevier, vol. 205(C), pages 244-255.
    24. Tone, Kaoru & Kweh, Qian Long & Lu, Wen-Min & Ting, Irene Wei Kiong, 2019. "Modeling investments in the dynamic network performance of insurance companies," Omega, Elsevier, vol. 88(C), pages 237-247.
    25. Avkiran, Necmi Kemal, 2015. "An illustration of dynamic network DEA in commercial banking including robustness tests," Omega, Elsevier, vol. 55(C), pages 141-150.
    26. Sebastián Lozano & Gabriel Villa, 2004. "Centralized Resource Allocation Using Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 22(1), pages 143-161, July.
    27. Rajiv D. Banker & Ram Natarajan, 2008. "Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis," Operations Research, INFORMS, vol. 56(1), pages 48-58, February.
    28. Banker, Rajiv & Natarajan, Ram & Zhang, Daqun, 2019. "Two-stage estimation of the impact of contextual variables in stochastic frontier production function models using Data Envelopment Analysis: Second stage OLS versus bootstrap approaches," European Journal of Operational Research, Elsevier, vol. 278(2), pages 368-384.
    29. Li, Ke & Lin, Boqiang, 2017. "An application of a double bootstrap to investigate the effects of technological progress on total-factor energy consumption performance in China," Energy, Elsevier, vol. 128(C), pages 575-585.
    30. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.
    31. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    32. Guo, Xiaoying & Lu, Ching-Cheng & Lee, Jen-Hui & Chiu, Yung-Ho, 2017. "Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China," Energy, Elsevier, vol. 134(C), pages 392-399.
    33. Min Yang & Qingxian An & Tao Ding & Pengzhen Yin & Liang Liang, 2019. "Carbon emission allocation in China based on gradually efficiency improvement and emission reduction planning principle," Annals of Operations Research, Springer, vol. 278(1), pages 123-139, July.
    34. Ciardiello, F. & Genovese, A. & Simpson, A., 2019. "Pollution responsibility allocation in supply networks: A game-theoretic approach and a case study," International Journal of Production Economics, Elsevier, vol. 217(C), pages 211-217.
    35. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    36. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    37. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    2. Yu, Anyu & You, Jianxin & Rudkin, Simon & Zhang, Hao, 2019. "Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis," Applied Energy, Elsevier, vol. 233, pages 232-243.
    3. Zhang, Yanfang & Wei, Jinpeng & Gao, Qi & Shi, Xunpeng & Zhou, Dequn, 2022. "Coordination between the energy-consumption permit trading scheme and carbon emissions trading: Evidence from China," Energy Economics, Elsevier, vol. 116(C).
    4. Chu, Junfei & Hou, Tianteng & Li, Feng & Yuan, Zhe, 2024. "Dynamic bargaining game DEA carbon emissions abatement allocation and the Nash equilibrium," Energy Economics, Elsevier, vol. 134(C).
    5. Wang, Yizhong & Hang, Ye & Wang, Qunwei, 2024. "Multi-pollutants allocation and compensation schemes: A new approach considering materials balance principle," Ecological Economics, Elsevier, vol. 224(C).
    6. Lozano, Sebastián & Contreras, Ignacio, 2022. "Centralised resource allocation using Lexicographic Goal Programming. Application to the Spanish public university system," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    7. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    8. Tao Ding & Ya Chen & Huaqing Wu & Yuqi Wei, 2018. "Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach," Annals of Operations Research, Springer, vol. 268(1), pages 497-511, September.
    9. Wu, Yinyin & Wang, Ping & Liu, Xin & Chen, Jiandong & Song, Malin, 2020. "Analysis of regional carbon allocation and carbon trading based on net primary productivity in China," China Economic Review, Elsevier, vol. 60(C).
    10. Jiasen Sun & Guo Li, 2022. "Optimizing emission reduction task sharing: technology and performance perspectives," Annals of Operations Research, Springer, vol. 316(1), pages 581-602, September.
    11. Zhao, Jiqiang & Wu, Xianhua & Guo, Ji & Gao, Chao, 2022. "Allocation of SO2 emission rights in city agglomerations considering cross-border transmission of pollutants: A new network DEA model," Applied Energy, Elsevier, vol. 325(C).
    12. Amirteimoori, Alireza & Kazemi Matin, Reza & Yadollahi, Amir Hossein, 2024. "Stochastic resource reallocation in two-stage production processes with undesirable outputs: An empirical study on the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    13. Yang, Mian & Hou, Yaru & Ji, Qiang & Zhang, Dayong, 2020. "Assessment and optimization of provincial CO2 emission reduction scheme in China: An improved ZSG-DEA approach," Energy Economics, Elsevier, vol. 91(C).
    14. Feng Li & Qingyuan Zhu & Liang Liang, 2019. "A new data envelopment analysis based approach for fixed cost allocation," Annals of Operations Research, Springer, vol. 274(1), pages 347-372, March.
    15. Chu, Junfei & Wu, Jie & Chu, Chengbin & Zhang, Tinglong, 2020. "DEA-based fixed cost allocation in two-stage systems: Leader-follower and satisfaction degree bargaining game approaches," Omega, Elsevier, vol. 94(C).
    16. Xie, Qiwei & Xu, Qifan & Zhu, Da & Rao, Kaifeng & Dai, Qianzhi, 2020. "Fair allocation of wastewater discharge permits based on satisfaction criteria using data envelopment analysis," Utilities Policy, Elsevier, vol. 66(C).
    17. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.
    18. Menghan Chen & Sheng Ang & Lijing Jiang & Feng Yang, 2020. "Centralized resource allocation based on cross-evaluation considering organizational objective and individual preferences," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 529-565, June.
    19. Chenpeng Feng & Rong Zhou & Jingjing Ding & Xiangze Xiao & Mingyue Pu, 2023. "A Method for Allocation of Carbon Emission Quotas to Provincial-Level Industries in China Based on DEA," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
    20. Yongjun Li & Wenhui Hou & Weiwei Zhu & Feng Li & Liang Liang, 2021. "Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs," Annals of Operations Research, Springer, vol. 304(1), pages 233-261, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:341:y:2024:i:1:d:10.1007_s10479-023-05606-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.