IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2024i1p57-d1554380.html
   My bibliography  Save this article

A Bibliometric Analysis of Carbon Allowances in the Carbon Emissions Trading Market

Author

Listed:
  • Ziyu Li

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Bangjun Wang

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

The carbon emissions trading market is an important policy tool for the implementation of the “double carbon” goal, and the study of carbon emission quotas is an important topic for promoting green transformation, energy savings, and emission reduction in enterprises. This paper surveys the development and construction history of China’s carbon trading market, uses the VOS-viewer measurement tool to analyze the keywords co-occurrence and evolution trend of the literature about the carbon trading market from 2005 to 2024, analyzes the research hotspots, and reviews the principles of the initial carbon quota allocation, carbon quota distribution methods, and the carbon trading market carbon quota mechanism under the model construction, etc. The following conclusions can be drawn: (1) The most commonly used principles for allocating initial carbon quota are the principle of equity, the principle of efficiency, and the principle of synthesis. The equity principle focuses on the capacities and burdens of different participants; the efficiency principle maximizes incentives for participants to reduce carbon emissions; the comprehensive principle allocates carbon allowances from the perspective of enterprises, with less consideration for social responsibility and economic benefits. (2) In terms of carbon quota allocation, the initial quota should be gradually tightened, and the proportion of paid quotas should be increased. (3) The types of participants in the carbon emission reduction supply chain model are relatively simple. This paper analyzes the current situation of the research on carbon emission quota, discusses its development rules and problems, and puts forward theoretical and practical suggestions for the better development and construction of China’s unified carbon market in the future.

Suggested Citation

  • Ziyu Li & Bangjun Wang, 2024. "A Bibliometric Analysis of Carbon Allowances in the Carbon Emissions Trading Market," Energies, MDPI, vol. 18(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:57-:d:1554380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/57/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/57/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeng, Lijun & Guo, Lingyi & Jiang, Liwen, 2024. "A bi-level multi-objective optimization model for inter-provincial carbon emissions transfer tax on electricity production," Applied Energy, Elsevier, vol. 356(C).
    2. Yang, Jie & Zhao, Boyuan & Ma, Kai & Zhong, Jiaqing & Xu, Wenya, 2024. "A carbon integrated energy pricing strategy based on non-cooperative game for energy hub in seaport energy system," Energy, Elsevier, vol. 309(C).
    3. Min Wang & Huayu Li & Yung-ho Chiu & Kexin Deng & Menghua Deng, 2023. "Research on the Carbon Emission Reduction Potential of the Ports in the Yangtze River Delta of China," SAGE Open, , vol. 13(4), pages 21582440231, November.
    4. Na Yu & Jianghua Chen & Lei Cheng, 2022. "Evolutionary Game Analysis of Carbon Emission Reduction between Government and Enterprises under Carbon Quota Trading Policy," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    5. Ru Li & Bao-Jun Tang, 2016. "Initial carbon quota allocation methods of power sectors: a China case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1075-1089, November.
    6. Mei, Shufan & Tan, Qinliang & Trivedi, Anupam & Srinivasan, Dipti, 2024. "A two-step optimization model for virtual power plant participating in spot market based on energy storage power distribution considering comprehensive forecasting error of renewable energy output," Applied Energy, Elsevier, vol. 376(PB).
    7. Luo, Yilun & Ahmadi, Esmaeil & McLellan, Benjamin Craig & Tezuka, Tetsuo, 2024. "A hybrid system dynamics model for power mix trajectory simulation in liberalized electricity markets considering carbon and capacity policy," Renewable Energy, Elsevier, vol. 233(C).
    8. Jianwei Ren & Bin Gao & Jiewei Zhang & Chunhua Chen, 2020. "Measuring the Energy and Carbon Emission Efficiency of Regional Transportation Systems in China: Chance-Constrained DEA Models," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, April.
    9. Huanhuan Huo & Haiyan Liu & Xinzhong Bao & Wei Cui & Lele Qin, 2022. "Game Analysis of Supply Chain Enterprises’ Choice of Carbon Emission Reduction Behavior under Environmental Regulation and Consumers’ Low Carbon Preference," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-14, August.
    10. Yanan Guo & Qiong Tong & Zhengjiao Li & Yuhao Zhao, 2022. "Research on Carbon Emission Quota of Railway in China from the Perspective of Equity and Efficiency," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    11. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    12. Chu, Junfei & Hou, Tianteng & Li, Feng & Yuan, Zhe, 2024. "Dynamic bargaining game DEA carbon emissions abatement allocation and the Nash equilibrium," Energy Economics, Elsevier, vol. 134(C).
    13. Zhao, Tianzhen & Ke, Haiqian & Zhang, Ning, 2025. "Comparing the innovation impacts on firms: Pilot vs. National Carbon Emission Trading Schemes in China," Applied Energy, Elsevier, vol. 377(PB).
    14. Fan, Ying & Jia, Jun-Jun & Wang, Xin & Xu, Jin-Hua, 2017. "What policy adjustments in the EU ETS truly affected the carbon prices?," Energy Policy, Elsevier, vol. 103(C), pages 145-164.
    15. Wang, Jiexin & Wang, Song, 2023. "The effect of electricity market reform on energy efficiency in China," Energy Policy, Elsevier, vol. 181(C).
    16. Yue-Jun Zhang & Jun-Fang Hao, 2017. "Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles," Annals of Operations Research, Springer, vol. 255(1), pages 117-140, August.
    17. Zhang, Xuefeng & Li, Zhe & Li, Guo, 2024. "Grandfather-based or benchmark-based: Strategy choice for carbon quota allocation methods in the carbon neutrality era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    18. Hou, Hui & Ge, Xiangdi & Yan, Yulin & Lu, Yanchao & Zhang, Ji & Dong, Zhao Yang, 2024. "An integrated energy system “green-carbon” offset mechanism and optimization method with Stackelberg game," Energy, Elsevier, vol. 294(C).
    19. Zhu, Yansong & Liu, Jizhen & Hu, Yong & Xie, Yan & Zeng, Deliang & Li, Ruilian, 2024. "Distributionally robust optimization model considering deep peak shaving and uncertainty of renewable energy," Energy, Elsevier, vol. 288(C).
    20. Xie, Li & Zhou, Zhichao & Hui, Shimin, 2022. "Does environmental regulation improve the structure of power generation technology? Evidence from China's pilot policy on the carbon emissions trading market(CETM)," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    21. Jingyuan Xu & Yue Zhang, 2022. "Has the international climate regime promoted climate justice? Evidence from Clean Development Mechanism projects in China," Climate Policy, Taylor & Francis Journals, vol. 22(2), pages 222-235, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siqin Xiong & Yushen Tian & Junping Ji & Xiaoming Ma, 2017. "Allocation of Energy Consumption among Provinces in China: A Weighted ZSG-DEA Model," Sustainability, MDPI, vol. 9(11), pages 1-12, November.
    2. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    3. Yali Zhang & Yihan Wang & Xiaoshu Hou, 2019. "Carbon Mitigation for Industrial Sectors in the Jing-Jin-Ji Urban Agglomeration, China," Sustainability, MDPI, vol. 11(22), pages 1-13, November.
    4. Jianguo Zhou & Yushuo Li & Xuejing Huo & Xiaolei Xu, 2019. "How to Allocate Carbon Emission Permits Among China’s Industrial Sectors Under the Constraint of Carbon Intensity?," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    5. Anyu Yu & Hao Zhang & Hu-chen Liu & Yu Shi & Weilong Bi, 2024. "Dynamic centralized resource allocation approach with contextual impacts: analyzing Chinese carbon allocation plans," Annals of Operations Research, Springer, vol. 341(1), pages 451-483, October.
    6. Yongjun Li & Wenhui Hou & Weiwei Zhu & Feng Li & Liang Liang, 2021. "Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs," Annals of Operations Research, Springer, vol. 304(1), pages 233-261, September.
    7. Fei Ye & Lixu Li & Zhiqiang Wang & Yina Li, 2018. "An Asymmetric Nash Bargaining Model for Carbon Emission Quota Allocation among Industries: Evidence from Guangdong Province, China," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    8. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    9. Qunli Wu & Hongjie Zhang, 2019. "Research on Optimization Allocation Scheme of Initial Carbon Emission Quota from the Perspective of Welfare Effect," Energies, MDPI, vol. 12(11), pages 1-27, June.
    10. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    11. Qianting Zhu & Wenwu Tang, 2017. "Regional-Level Carbon Allocation in China Based on Sectoral Emission Patterns under the Peak Commitment," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    12. Zhang, Jingxiao & Jin, Weixing & Yang, Guo-liang & Li, Hui & Ke, Yongjian & Philbin, Simon Patrick, 2021. "Optimizing regional allocation of CO2 emissions considering output under overall efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    13. Shaofu Du & Jun Qian & Tianzhuo Liu & Li Hu, 2020. "Emission allowance allocation mechanism design: a low-carbon operations perspective," Annals of Operations Research, Springer, vol. 291(1), pages 247-280, August.
    14. Wang, Mingxi & Hu, Yi & Wang, Shouyang & Dang, Chuangyin, 2023. "The optimal carbon tax mechanism for managing carbon emissions," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    15. Xu, Zhongwen & Yao, Liming & Liu, Qiaoling & Long, Yin, 2019. "Policy implications for achieving the carbon emission reduction target by 2030 in Japan-Analysis based on a bilevel equilibrium model," Energy Policy, Elsevier, vol. 134(C).
    16. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    17. Zhu, Bangzhu & Jiang, Mingxing & He, Kaijian & Chevallier, Julien & Xie, Rui, 2018. "Allocating CO2 allowances to emitters in China: A multi-objective decision approach," Energy Policy, Elsevier, vol. 121(C), pages 441-451.
    18. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    19. Wu, Yinyin & Wang, Ping & Liu, Xin & Chen, Jiandong & Song, Malin, 2020. "Analysis of regional carbon allocation and carbon trading based on net primary productivity in China," China Economic Review, Elsevier, vol. 60(C).
    20. Wang, Yubao & Zhen, Junjie, 2024. "Regional electricity cooperation model for cost-effective electricity management with an emphasis on economic efficiency," Energy Policy, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:57-:d:1554380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.