IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v89y2020ics0140988320301572.html
   My bibliography  Save this article

Energy and environmental efficiency of China's transportation sectors under the constraints of energy consumption and environmental pollutions

Author

Listed:
  • Zhu, Qingyuan
  • Li, Xingchen
  • Li, Feng
  • Wu, Jie
  • Zhou, Dequn

Abstract

The rapid growth of the economy in China has caused many problems for the country, particularly the energy shortage and environmental pollution. Thus, establishing a sustainable development of society has attracted considerable attention in recent years. In this paper, we evaluate the sustainability efficiency in terms of energy usage and environmental impact by using a new equilibrium efficient frontier data envelopment analysis (EEFDEA) approach. For the first time, DEA is used in the context of required fixed reductions in both total energy consumption and total environmental pollution, which is a realistic context that introduces a “zero-sum” aspect to the problem. As part of the analysis, the generalized equilibrium efficient frontier (EEF) is constructed based on minimum satisfaction degree maximization of all units, considering both minimum and maximum adjustment strategy, while most existing studies only minimized the weighted sum reduction. Finally, the sustainability efficiency of transportation sectors of China's 30 main regions is analyzed by using our proposed model. The results show that more effective measures should be taken for sustainable development.

Suggested Citation

  • Zhu, Qingyuan & Li, Xingchen & Li, Feng & Wu, Jie & Zhou, Dequn, 2020. "Energy and environmental efficiency of China's transportation sectors under the constraints of energy consumption and environmental pollutions," Energy Economics, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:eneeco:v:89:y:2020:i:c:s0140988320301572
    DOI: 10.1016/j.eneco.2020.104817
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988320301572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2020.104817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jie & Zhu, Qingyuan & Ji, Xiang & Chu, Junfei & Liang, Liang, 2016. "Two-stage network processes with shared resources and resources recovered from undesirable outputs," European Journal of Operational Research, Elsevier, vol. 251(1), pages 182-197.
    2. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    3. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    4. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. E G Gomes & M P E Lins, 2008. "Modelling undesirable outputs with zero sum gains data envelopment analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 616-623, May.
    7. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    8. Lins, Marcos P. Estellita & Gomes, Eliane G. & Soares de Mello, Joao Carlos C. B. & Soares de Mello, Adelino Jose R., 2003. "Olympic ranking based on a zero sum gains DEA model," European Journal of Operational Research, Elsevier, vol. 148(2), pages 312-322, July.
    9. Jie Wu & Qingyuan Zhu & Junfei Chu & Qingxian An & Liang Liang, 2016. "A DEA-based approach for allocation of emission reduction tasks," International Journal of Production Research, Taylor & Francis Journals, vol. 54(18), pages 5618-5633, September.
    10. Fang, Lei & Li, Hecheng, 2015. "Cost efficiency in data envelopment analysis under the law of one price," European Journal of Operational Research, Elsevier, vol. 240(2), pages 488-492.
    11. Joe Zhu, 2004. "Imprecise DEA via Standard Linear DEA Models with a Revisit to a Korean Mobile Telecommunication Company," Operations Research, INFORMS, vol. 52(2), pages 323-329, April.
    12. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    13. Yang, Min & Li, Yong Jun & Liang, Liang, 2015. "A generalized equilibrium efficient frontier data envelopment analysis approach for evaluating DMUs with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 246(1), pages 209-217.
    14. Lei Fang, 2016. "A new approach for achievement of the equilibrium efficient frontier with fixed-sum outputs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(3), pages 412-420, March.
    15. Alireza Amirteimoori & Simin Masrouri & Feng Yang & Sohrab Kordrostami, 2017. "Context-based competition strategy and performance analysis with fixed-sum outputs: an application to banking sector," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1461-1469, November.
    16. Shi, Guang-Ming & Bi, Jun & Wang, Jin-Nan, 2010. "Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs," Energy Policy, Elsevier, vol. 38(10), pages 6172-6179, October.
    17. Qingyuan Zhu & Jie Wu & Malin Song & Liang Liang, 2017. "A unique equilibrium efficient frontier with fixed-sum outputs in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1483-1490, December.
    18. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    19. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    20. Yang, Feng & Wu, Desheng Dash & Liang, Liang & O'Neill, Liam, 2011. "Competition strategy and efficiency evaluation for decision making units with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 212(3), pages 560-569, August.
    21. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    22. Ali Emrouznejad, 2014. "Advances in data envelopment analysis," Annals of Operations Research, Springer, vol. 214(1), pages 1-4, March.
    23. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    24. Emrouznejad, Ali & Rostami-Tabar, Bahman & Petridis, Konstantinos, 2016. "A novel ranking procedure for forecasting approaches using Data Envelopment Analysis," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 235-243.
    25. Li, Yongjun & Yang, Min & Chen, Ya & Dai, Qianzhi & Liang, Liang, 2013. "Allocating a fixed cost based on data envelopment analysis and satisfaction degree," Omega, Elsevier, vol. 41(1), pages 55-60.
    26. Lei Fang, 2016. "Centralized resource allocation DEA models based on revenue efficiency under limited information," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(7), pages 945-952, July.
    27. Yang, Min & Li, Yongjun & Chen, Ya & Liang, Liang, 2014. "An equilibrium efficiency frontier data envelopment analysis approach for evaluating decision-making units with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 239(2), pages 479-489.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Wu & Panpan Xia & Qingyuan Zhu & Junfei Chu, 2019. "Measuring environmental efficiency of thermoelectric power plants: a common equilibrium efficient frontier DEA approach with fixed-sum undesirable output," Annals of Operations Research, Springer, vol. 275(2), pages 731-749, April.
    2. Yongjun Li & Wenhui Hou & Weiwei Zhu & Feng Li & Liang Liang, 2021. "Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs," Annals of Operations Research, Springer, vol. 304(1), pages 233-261, September.
    3. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    4. Chu, Junfei & Dong, Yanhua & Yuan, Zhe, 2024. "An improved equilibrium efficient frontier data envelopment analysis approach for evaluating decision-making units with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 318(2), pages 592-604.
    5. Yu, Shasha & Lei, Ming & Deng, Honghui, 2023. "Evaluation to fixed-sum-outputs DMUs by non-oriented equilibrium efficient frontier DEA approach with Nash bargaining-based selection," Omega, Elsevier, vol. 115(C).
    6. Ding, Tao & Zhang, Yun & Zhang, Danlu & Li, Feng, 2023. "Performance evaluation of Chinese research universities: A parallel interactive network DEA approach with shared and fixed sum inputs," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    7. Lozano, Sebastián, 2023. "Bargaining approach for efficiency assessment and target setting with fixed-sum variables," Omega, Elsevier, vol. 114(C).
    8. Xi Xiong & Guo-liang Yang & Kai-di Liu & De-qun Zhou, 2022. "A proposed fixed-sum carryovers reallocation DEA approach for social scientific resources of Chinese public universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4097-4121, July.
    9. Qing Feng & Dengfeng Li & Guichuan Zhou & Zhibin Wu, 2024. "Fairness based unique common equilibrium efficient frontier for evaluating decision-making units with fixed-sum outputs," Annals of Operations Research, Springer, vol. 341(1), pages 427-449, October.
    10. Lucas Assunção & Andréa Cynthia Santos & Thiago F. Noronha & Rafael Andrade, 2021. "Improving logic-based Benders' algorithms for solving min-max regret problems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 23-57.
    11. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    12. Bouzidis, Thanasis & Karagiannis, Giannis, 2022. "An alternative ranking of DMUs performance for the ZSG-DEA model," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    13. Li, Yongjun & Liu, Jin & Ang, Sheng & Yang, Feng, 2021. "Performance evaluation of two-stage network structures with fixed-sum outputs: An application to the 2018winter Olympic Games," Omega, Elsevier, vol. 102(C).
    14. Jie Wu & Qingyuan Zhu & Junfei Chu & Qingxian An & Liang Liang, 2016. "A DEA-based approach for allocation of emission reduction tasks," International Journal of Production Research, Taylor & Francis Journals, vol. 54(18), pages 5618-5633, September.
    15. Chu, Junfei & Hou, Tianteng & Li, Feng & Yuan, Zhe, 2024. "Dynamic bargaining game DEA carbon emissions abatement allocation and the Nash equilibrium," Energy Economics, Elsevier, vol. 134(C).
    16. Yang, Min & Li, Yong Jun & Liang, Liang, 2015. "A generalized equilibrium efficient frontier data envelopment analysis approach for evaluating DMUs with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 246(1), pages 209-217.
    17. Xie, Qiwei & Xu, Qifan & Zhu, Da & Rao, Kaifeng & Dai, Qianzhi, 2020. "Fair allocation of wastewater discharge permits based on satisfaction criteria using data envelopment analysis," Utilities Policy, Elsevier, vol. 66(C).
    18. Lozano, Sebastián & Contreras, Ignacio, 2022. "Centralised resource allocation using Lexicographic Goal Programming. Application to the Spanish public university system," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    19. Qingyuan Zhu & Jie Wu & Malin Song & Liang Liang, 2017. "A unique equilibrium efficient frontier with fixed-sum outputs in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1483-1490, December.
    20. Xifan Chen & Qingyuan Zhu & Chengzhen Xu & Zhiyang Shen & Malin Song, 2024. "Energy and environmental efficiency of China's regional electric power industry by considering renewable energy constraints," Energy & Environment, , vol. 35(2), pages 927-949, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:89:y:2020:i:c:s0140988320301572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.