IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v255y2017i1d10.1007_s10479-016-2232-2.html
   My bibliography  Save this article

Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles

Author

Listed:
  • Yue-Jun Zhang

    (Hunan University
    Hunan University)

  • Jun-Fang Hao

    (Hunan University
    Hunan University)

Abstract

The carbon emission of China’s industry accounts for more than 70 % of the total in the nation, thus the implementation of carbon emission quota trading in industry is of great importance to realize China’s national carbon emission reduction targets. Meanwhile, the allocation of carbon emission quota among sectors or enterprises proves the first and critical step. For this reason, this paper constructs a comprehensive index combined with the subjective, objective and linear combination weighting methods to allocate carbon emission quotas among the 39 sectors of China’s industry in 2020 based on the level of 2015, and employs the input-oriented ZSG-DEA model to examine the efficiency of allocation solutions in 2020. The results indicate that, first, when carbon emission reduction capacity, responsibility and potential are considered for the comprehensive index of carbon emission quota allocation, the mitigation responsibility plays a relatively higher role than other two indicators. Second, all of the subjective, objective and linear combination weighting methods can be used for effective allocation of carbon emission quotas, and the former two methods have less advantage in light of efficiency. Third, six key industrial sectors are respectively allocated over 500 million tonnes of carbon emission quotas in 2020, which together account for 91.77 % of the total in the industry. Finally, the final carbon emission quota allocation solution reflects both the equity and efficiency principles and achieve the Pareto optimal state.

Suggested Citation

  • Yue-Jun Zhang & Jun-Fang Hao, 2017. "Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles," Annals of Operations Research, Springer, vol. 255(1), pages 117-140, August.
  • Handle: RePEc:spr:annopr:v:255:y:2017:i:1:d:10.1007_s10479-016-2232-2
    DOI: 10.1007/s10479-016-2232-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2232-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2232-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Jing Jing & Ye, Bin & Ma, Xiao Ming, 2014. "The construction of Shenzhen׳s carbon emission trading scheme," Energy Policy, Elsevier, vol. 75(C), pages 17-21.
    2. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    5. E G Gomes & M P E Lins, 2008. "Modelling undesirable outputs with zero sum gains data envelopment analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 616-623, May.
    6. Lins, Marcos P. Estellita & Gomes, Eliane G. & Soares de Mello, Joao Carlos C. B. & Soares de Mello, Adelino Jose R., 2003. "Olympic ranking based on a zero sum gains DEA model," European Journal of Operational Research, Elsevier, vol. 148(2), pages 312-322, July.
    7. Ji-Won Park & Chae Un Kim & Walter Isard, 2011. "Permit Allocation in Emissions Trading using the Boltzmann Distribution," Papers 1108.2305, arXiv.org, revised Mar 2012.
    8. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    9. Ringius, Lasse & Torvanger, Asbjorn & Holtsmark, Bjart, 1998. "Can multi-criteria rules fairly distribute climate burdens?: OECD results from three burden sharing rules," Energy Policy, Elsevier, vol. 26(10), pages 777-793, August.
    10. Zhang, Yue-Jun & Wang, Ao-Dong & Tan, Weiping, 2015. "The impact of China's carbon allowance allocation rules on the product prices and emission reduction behaviors of ETS-covered enterprises," Energy Policy, Elsevier, vol. 86(C), pages 176-185.
    11. Park, Ji-Won & Kim, Chae Un & Isard, Walter, 2012. "Permit allocation in emissions trading using the Boltzmann distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4883-4890.
    12. Costanza, Robert, 1995. "Economic growth, carrying capacity, and the environment," Ecological Economics, Elsevier, vol. 15(2), pages 89-90, November.
    13. Yue-Jun Zhang & Jun-Fang Hao, 2015. "The allocation of carbon emission intensity reduction target by 2020 among provinces in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 921-937, November.
    14. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    15. Ahn, Jaekyun, 2014. "Assessment of initial emission allowance allocation methods in the Korean electricity market," Energy Economics, Elsevier, vol. 43(C), pages 244-255.
    16. Lee, Cheng F. & Lin, Sue J. & Lewis, Charles, 2008. "Analysis of the impacts of combining carbon taxation and emission trading on different industry sectors," Energy Policy, Elsevier, vol. 36(2), pages 722-729, February.
    17. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    18. Vadas, Timothy M. & Fahey, Timothy J. & Sherman, Ruth E. & Kay, David, 2007. "Local-scale analysis of carbon mitigation strategies: Tompkins County, New York, USA," Energy Policy, Elsevier, vol. 35(11), pages 5515-5525, November.
    19. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    20. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "Sharing emission space at an equitable basis: Allocation scheme based on the equal cumulative emission per capita principle," Applied Energy, Elsevier, vol. 113(C), pages 1810-1818.
    21. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    22. Lozano, Sebastián & Gutiérrez, Ester, 2008. "Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions," Ecological Economics, Elsevier, vol. 66(4), pages 687-699, July.
    23. Gupta, Sujata & M Bhandari, Preety, 1999. "An effective allocation criterion for CO2 emissions," Energy Policy, Elsevier, vol. 27(12), pages 727-736, November.
    24. Wu, Libo & Qian, Haoqi & Li, Jin, 2014. "Advancing the experiment to reality: Perspectives on Shanghai pilot carbon emissions trading scheme," Energy Policy, Elsevier, vol. 75(C), pages 22-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    2. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    3. Siqin Xiong & Yushen Tian & Junping Ji & Xiaoming Ma, 2017. "Allocation of Energy Consumption among Provinces in China: A Weighted ZSG-DEA Model," Sustainability, MDPI, vol. 9(11), pages 1-12, November.
    4. Yongjun Li & Wenhui Hou & Weiwei Zhu & Feng Li & Liang Liang, 2021. "Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs," Annals of Operations Research, Springer, vol. 304(1), pages 233-261, September.
    5. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    6. Baochen Yang & Chuanze Liu & Yunpeng Su & Xin Jing, 2017. "The Allocation of Carbon Intensity Reduction Target by 2020 among Industrial Sectors in China," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    7. Shaofu Du & Jun Qian & Tianzhuo Liu & Li Hu, 2020. "Emission allowance allocation mechanism design: a low-carbon operations perspective," Annals of Operations Research, Springer, vol. 291(1), pages 247-280, August.
    8. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    9. Ke Wang & Xueying Yu, 2017. "Industrial Energy and Environment Efficiency of Chinese Cities: An Analysis Based on Range-Adjusted Measure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1023-1042, July.
    10. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    11. Min Yang & Qingxian An & Tao Ding & Pengzhen Yin & Liang Liang, 2019. "Carbon emission allocation in China based on gradually efficiency improvement and emission reduction planning principle," Annals of Operations Research, Springer, vol. 278(1), pages 123-139, July.
    12. Dalai Ma & Yaping Xiao & Na Zhao, 2022. "Optimization and Spatiotemporal Differentiation of Carbon Emission Rights Allocation in the Power Industry in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    13. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    14. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    15. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    16. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    17. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    18. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
    19. Xunzhang Pan & Fei Teng, 2017. "Assessment of China’s Mitigation Targets in an Effort-Sharing Framework," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    20. Shihong Zeng & Yan Xu & Liming Wang & Jiuying Chen & Qirong Li, 2016. "Forecasting the Allocative Efficiency of Carbon Emission Allowance Financial Assets in China at the Provincial Level in 2020," Energies, MDPI, vol. 9(5), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:255:y:2017:i:1:d:10.1007_s10479-016-2232-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.