IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v128y2023ics0140988323006084.html
   My bibliography  Save this article

Shanghai crude oil futures: Returns Independence, volatility asymmetry, and hedging potential

Author

Listed:
  • Naqvi, Bushra
  • Mirza, Nawazish
  • Umar, Muhammad
  • Rizvi, Syed Kumail Abbas

Abstract

Amidst the rise of Shanghai crude oil futures (SCOF) as a preeminent contender in the global oil arena, this study analyzes its returns and volatility structures in compelling contrast to West Texas Intermediate (WTI) and Brent oil futures (BRENT). A comprehensive examination is conducted using various GARCH models and News impact curves, with the analysis based on daily data spanning from April 2021 to March 2023. The results reveal distinct responses of SCOF when contrasted with WTI and Brent. Firstly, the study finds that SCOF returns exhibit a level of independence from global market movements. Secondly, the assessment of potential asymmetries in the volatility structures displays notable differences among the three markets. Specifically, WTI demonstrates the highest asymmetry, while SCOF exhibits lower asymmetry. These findings imply that SCOF returns exhibit stability and resilience and hold the potential to serve as a formidable hedge against adverse shocks. As investors and policymakers navigate the complex terrain of the global oil market, these insights underscore the strategic advantages and opportunities that SCOF may offer, both in individual investment decisions and broader risk management strategies.

Suggested Citation

  • Naqvi, Bushra & Mirza, Nawazish & Umar, Muhammad & Rizvi, Syed Kumail Abbas, 2023. "Shanghai crude oil futures: Returns Independence, volatility asymmetry, and hedging potential," Energy Economics, Elsevier, vol. 128(C).
  • Handle: RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006084
    DOI: 10.1016/j.eneco.2023.107110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323006084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brooks, Chris & Rew, Alistair G, 2002. "Testing for a Unit Root in a Process Exhibiting a Structural Break in the Presence of GARCH Errors," Computational Economics, Springer;Society for Computational Economics, vol. 20(3), pages 157-176, December.
    2. Jiasha Fu & Hui Qiao, 2022. "The Time-Varying Connectedness Between China’s Crude Oil Futures and International Oil Markets: A Return and Volatility Spillover Analysis," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 341-376, December.
    3. Kristoufek, Ladislav, 2014. "Leverage effect in energy futures," Energy Economics, Elsevier, vol. 45(C), pages 1-9.
    4. Faheem Aslam & Skander Slim & Mohamed Osman & Ibrahim Tabche, 2022. "The footprints of Russia–Ukraine war on the intraday (in)efficiency of energy markets: a multifractal analysis," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 24(1), pages 89-104, November.
    5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    6. Sun, Chuanwang & Min, Jialin & Sun, Jiacheng & Gong, Xu, 2023. "The role of China's crude oil futures in world oil futures market and China's financial market," Energy Economics, Elsevier, vol. 120(C).
    7. Guru, Biplab Kumar & Pradhan, Ashis Kumar & Bandaru, Ramakrishna, 2023. "Volatility contagion between oil and the stock markets of G7 countries plus India and China," Resources Policy, Elsevier, vol. 81(C).
    8. Umar, Muhammad & Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Furqan, Mehreen, 2023. "Asymmetric volatility structure of equity returns: Evidence from an emerging market," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 330-336.
    9. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    10. Zavadska, Miroslava & Morales, Lucía & Coughlan, Joseph, 2020. "Brent crude oil prices volatility during major crises," Finance Research Letters, Elsevier, vol. 32(C).
    11. Sardar, Naafey & Sharma, Shahil, 2022. "Oil prices & stock returns: Modeling the asymmetric effects around the zero lower bound," Energy Economics, Elsevier, vol. 107(C).
    12. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    13. Fan, Ying & Zhang, Yue-Jun & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Estimating 'Value at Risk' of crude oil price and its spillover effect using the GED-GARCH approach," Energy Economics, Elsevier, vol. 30(6), pages 3156-3171, November.
    14. Yudong Wang & Li Liu, 2016. "Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging," Empirical Economics, Springer, vol. 50(4), pages 1481-1509, June.
    15. Xu, Weiju & Ma, Feng & Chen, Wang & Zhang, Bing, 2019. "Asymmetric volatility spillovers between oil and stock markets: Evidence from China and the United States," Energy Economics, Elsevier, vol. 80(C), pages 310-320.
    16. Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Boubaker, Sabri & Mirza, Nawazish, 2022. "The power play of natural gas and crude oil in the move towards the financialization of the energy market," Energy Economics, Elsevier, vol. 112(C).
    17. Liu, Tangyong & Gong, Xu, 2020. "Analyzing time-varying volatility spillovers between the crude oil markets using a new method," Energy Economics, Elsevier, vol. 87(C).
    18. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    19. Wei, Yu & Zhang, Yaojie & Wang, Yudong, 2022. "Information connectedness of international crude oil futures: Evidence from SC, WTI, and Brent," International Review of Financial Analysis, Elsevier, vol. 81(C).
    20. Wang, Jianli & Qiu, Shushu & Yick, Ho Yin, 2022. "The influence of the Shanghai crude oil futures on the global and domestic oil markets," Energy, Elsevier, vol. 245(C).
    21. Nomikos, Nikos & Andriosopoulos, Kostas, 2012. "Modelling energy spot prices: Empirical evidence from NYMEX," Energy Economics, Elsevier, vol. 34(4), pages 1153-1169.
    22. Chang, Lei & Baloch, Zulfiqar Ali & Saydaliev, Hayot Berk & Hyder, Mansoor & Dilanchiev, Azer, 2022. "Testing oil price volatility during Covid-19: Global economic impact," Resources Policy, Elsevier, vol. 78(C).
    23. Syed Kumail Abbas Naqvi & Bushra Naqvi, 2010. "Asymmetric Behavior of Inflation Uncertainty and Friedman-Ball Hypothesis: Evidence from Pakistan," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 15(2), pages 1-33, Jul-Dec.
    24. Stelios Bekiros & Gazi Salah Uddin, 2017. "Extreme Dependence under Uncertainty: an application to Stock, Currency and Oil Markets," International Review of Finance, International Review of Finance Ltd., vol. 17(1), pages 155-162, March.
    25. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    26. Chang, Kuang-Liang, 2012. "Volatility regimes, asymmetric basis effects and forecasting performance: An empirical investigation of the WTI crude oil futures market," Energy Economics, Elsevier, vol. 34(1), pages 294-306.
    27. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    28. Ine Van Robays, 2016. "Macroeconomic Uncertainty and Oil Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(5), pages 671-693, October.
    29. Mirza, Nawazish & Naqvi, Bushra & Rahat, Birjees & Rizvi, Syed Kumail Abbas, 2020. "Price reaction, volatility timing and funds’ performance during Covid-19," Finance Research Letters, Elsevier, vol. 36(C).
    30. Faheem Aslam & Skander Slim & Mohamed Osman & Ibrahim Tabche, 2022. "The footprints of Russia–Ukraine war on the intraday (in)efficiency of energy markets: a multifractal analysis," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 24(1), pages 89-104, November.
    31. Syed Kumail Abbas Rizvi & Bushra Naqvi & Christian Bordes & Nawazish Mirza, 2014. "Inflation volatility: an Asian perspective," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 27(1), pages 280-303, January.
    32. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    33. Afees A. Salisu, 2014. "Modelling oil price volatility before, during and after the global financial crisis," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 38(4), pages 469-495, December.
    34. Su, Chi-Wei & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Mirza, Nawazish & Umar, Muhammad, 2022. "COVID19: A blessing in disguise for European stock markets?," Finance Research Letters, Elsevier, vol. 49(C).
    35. Le, Thai-Ha & Boubaker, Sabri & Bui, Manh Tien & Park, Donghyun, 2023. "On the volatility of WTI crude oil prices: A time-varying approach with stochastic volatility," Energy Economics, Elsevier, vol. 117(C).
    36. Ren, Xiaohang & Li, Yiying & Qi, Yinshu & Duan, Kun, 2022. "Asymmetric effects of decomposed oil-price shocks on the EU carbon market dynamics," Energy, Elsevier, vol. 254(PB).
    37. Tarek Bouazizi & Mongi Lassoued & Zouhaier Hadhek, 2021. "Oil Price Volatility Models during Coronavirus Crisis: Testing with Appropriate Models Using Further Univariate GARCH and Monte Carlo Simulation Models," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 281-292.
    38. Qiang Ji & Dayong Zhang & Yuqian Zhao, 2022. "Intra-day co-movements of crude oil futures: China and the international benchmarks," Annals of Operations Research, Springer, vol. 313(1), pages 77-103, June.
    39. Chaohua He & Guangchen Li & Hai Fan & Weixian Wei, 2021. "Correlation between Shanghai crude oil futures, stock, foreign exchange, and gold markets: a GARCH-vine-copula method," Applied Economics, Taylor & Francis Journals, vol. 53(11), pages 1249-1263, March.
    40. Yang, Chen & Lv, Fei & Fang, Libing & Shang, Xingxing, 2020. "The pricing efficiency of crude oil futures in the Shanghai International Exchange," Finance Research Letters, Elsevier, vol. 36(C).
    41. Ewing, Bradley T. & Malik, Farooq, 2017. "Modelling asymmetric volatility in oil prices under structural breaks," Energy Economics, Elsevier, vol. 63(C), pages 227-233.
    42. Mirza, Nawazish & Naqvi, Bushra & Rizvi, Syed Kumail Abbas & Umar, Muhammad, 2023. "Fiscal or monetary? Efficacy of regulatory regimes and energy trilemma of the inflation reduction act (IRA)," International Review of Financial Analysis, Elsevier, vol. 90(C).
    43. Rahman, Sajjadur & Serletis, Apostolos, 2011. "The Asymmetric Effects Of Oil Price Shocks," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 437-471, November.
    44. Ozdemir, Zeynel Abidin & Gokmenoglu, Korhan & Ekinci, Cagdas, 2013. "Persistence in crude oil spot and futures prices," Energy, Elsevier, vol. 59(C), pages 29-37.
    45. Luo, Jiawen & Ji, Qiang, 2018. "High-frequency volatility connectedness between the US crude oil market and China's agricultural commodity markets," Energy Economics, Elsevier, vol. 76(C), pages 424-438.
    46. Rahman, Sajjadur, 2022. "The asymmetric effects of oil price shocks on the U.S. stock market," Energy Economics, Elsevier, vol. 105(C).
    47. Yu, Yang & Guo, SongLin & Chang, XiaoChen, 2022. "Oil prices volatility and economic performance during COVID-19 and financial crises of 2007–2008," Resources Policy, Elsevier, vol. 75(C).
    48. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Peiyuan & Wang, Dandan & Zafar, Quratulain & Waheed, Humayun, 2024. "Strategic resource management for economic sustainability: Assessing the impact of technological advancement and energy efficiency," Resources Policy, Elsevier, vol. 89(C).
    2. Yue, Xiao-Guang & Lu, Changyi & Pi, Saiqi & Huang, Hongyu & Manta, Otilia, 2024. "The role of mineral resources, sustainable finance, and innovation in promoting sustainable development under the IRA 2022," Resources Policy, Elsevier, vol. 90(C).
    3. Liu, Pengqiang & Li, Xin & Chang, Hsu-Ling & Su, Nan, 2024. "Natural resources Kuznets curve: The role of mineral resources, urbanization, and digitalization in BRICS economies," Resources Policy, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yu & Xiao, Yang & Li, Fuxing, 2020. "Forecasting crude oil price volatility via a HM-EGARCH model," Energy Economics, Elsevier, vol. 87(C).
    2. Ewing, Bradley T. & Malik, Farooq, 2017. "Modelling asymmetric volatility in oil prices under structural breaks," Energy Economics, Elsevier, vol. 63(C), pages 227-233.
    3. Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
    4. Samet Gunay & Audil Rashid Khaki, 2018. "Best Fitting Fat Tail Distribution for the Volatilities of Energy Futures: Gev, Gat and Stable Distributions in GARCH and APARCH Models," JRFM, MDPI, vol. 11(2), pages 1-19, June.
    5. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    6. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    7. Carnero, M. Angeles & Pérez, Ana, 2019. "Leverage effect in energy futures revisited," Energy Economics, Elsevier, vol. 82(C), pages 237-252.
    8. Tarek Bouazizi & Zouhaier Hadhek & Fatma Mrad & Mosbah Lafi, 2021. "Changes in Demand for Crude Oil and its Correlation with Crude Oil and Stock Market Returns Volatilities: Evidence from Three Asian Oil Importing Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 27-43.
    9. Tarek Bouazizi & Mongi Lassoued & Zouhaier Hadhek, 2021. "Oil Price Volatility Models during Coronavirus Crisis: Testing with Appropriate Models Using Further Univariate GARCH and Monte Carlo Simulation Models," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 281-292.
    10. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Modeling energy price dynamics: GARCH versus stochastic volatility," Energy Economics, Elsevier, vol. 54(C), pages 182-189.
    11. Xiao, Yang, 2020. "The risk spillovers from the Chinese stock market to major East Asian stock markets: A MSGARCH-EVT-copula approach," International Review of Economics & Finance, Elsevier, vol. 65(C), pages 173-186.
    12. Priya, Pragati & Pal, Debdatta, 2024. "Does crude oil price volatility respond asymmetrically to financial shocks?," Resources Policy, Elsevier, vol. 92(C).
    13. Yue-Jun Zhang & Ting Yao & Ling-Yun He, 2015. "Forecasting crude oil market volatility: can the Regime Switching GARCH model beat the single-regime GARCH models?," Papers 1512.01676, arXiv.org.
    14. Dimitrios Kartsonakis-Mademlis & Nikolaos Dritsakis, 2022. "Asymmetric volatility transmission in Japanese stock market in the presence of structural breaks," The Japanese Economic Review, Springer, vol. 73(4), pages 647-677, October.
    15. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    16. Jo-Hui & Chen & Sabbor Hussain, 2022. "Jump Dynamics and Leverage Effect: Evidences from Energy Exchange Traded Fund (ETFs)," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-7.
    17. Pablo Cansado-Bravo & Carlos Rodríguez-Monroy, 2018. "Persistence of Oil Prices in Gas Import Prices and the Resilience of the Oil-Indexation Mechanism. The Case of Spanish Gas Import Prices," Energies, MDPI, vol. 11(12), pages 1-17, December.
    18. Klein, Tony & Walther, Thomas, 2016. "Oil price volatility forecast with mixture memory GARCH," Energy Economics, Elsevier, vol. 58(C), pages 46-58.
    19. Umar, Muhammad & Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Furqan, Mehreen, 2023. "Asymmetric volatility structure of equity returns: Evidence from an emerging market," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 330-336.
    20. Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.

    More about this item

    Keywords

    SCOF; WTI; Brent; Volatility dynamics; Crude oil futures;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.