IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v533y2019ics0378437119311574.html
   My bibliography  Save this article

Multifractal characteristics analysis of crude oil futures prices fluctuation in China

Author

Listed:
  • Wang, Feng
  • Ye, Xin
  • Wu, Congxin

Abstract

China crude oil futures were officially listed in the Shanghai International Energy Exchange Center (INE) on March 26, 2018. The cross-correlation function of the return series of crude oil futures prices between INE and mature markets (WTI and Brent) was calculated. The result shows that the return series of the INE crude oil futures price had the strongest correlation with that of WTI and Brent when the interval was one day. Then, the R/S analysis, multifractal detrended fluctuation analysis (MF-DFA), and multifractal spectrum were used to analyze the fractal characteristics of the INE crude oil market. The results show that the returns of the INE crude oil price have significant multifractal characteristics. Compared with the mature crude oil futures markets (WTI and Brent), the multifractal characteristics of the INE crude oil futures market are weaker than the Brent market but stronger than the WTI market Lastly according to the multifractal spectrum, the risk of the INE crude oil futures market is less than WTI and Brent market

Suggested Citation

  • Wang, Feng & Ye, Xin & Wu, Congxin, 2019. "Multifractal characteristics analysis of crude oil futures prices fluctuation in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
  • Handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311574
    DOI: 10.1016/j.physa.2019.122021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119311574
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xiaohong & Huang, Shupei, 2020. "Identifying the comovement of price between China's and international crude oil futures: A time-frequency perspective," International Review of Financial Analysis, Elsevier, vol. 72(C).
    2. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
    3. Yao, Can-Zhong & Mo, Yi-Na & Zhang, Ze-Kun, 2021. "A study of the efficiency of the Chinese clean energy stock market and its correlation with the crude oil market based on an asymmetric multifractal scaling behavior analysis," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    4. Samuel T. Ogunjo, 2023. "The impact of the 2007–2008 global financial crisis on the multifractality of the Nigerian Stock Exchange," SN Business & Economics, Springer, vol. 3(1), pages 1-17, January.
    5. Shao, Mingao & Hua, Yongjun, 2022. "Price discovery efficiency of China's crude oil futures: Evidence from the Shanghai crude oil futures market," Energy Economics, Elsevier, vol. 112(C).
    6. Zhang, Shuchang & Guo, Yaoqi & Cheng, Hui & Zhang, Hongwei, 2021. "Cross-correlations between price and volume in China's crude oil futures market: A study based on multifractal approaches," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    8. Guo, Yangli & Li, Pan & Wu, Hanlin, 2023. "Jumps in the Chinese crude oil futures volatility forecasting: New evidence," Energy Economics, Elsevier, vol. 126(C).
    9. Lin, Boqiang & Su, Tong, 2021. "Do China's macro-financial factors determine the Shanghai crude oil futures market?," International Review of Financial Analysis, Elsevier, vol. 78(C).
    10. Hu, Genhua & Jiang, Haifeng, 2023. "Time-varying jumps in China crude oil futures market impacted by COVID-19 pandemic," Resources Policy, Elsevier, vol. 82(C).
    11. Wang, Feng & Ye, Xin & Chen, HongTao & Wu, Congxin, 2021. "A portfolio strategy of stock market based on mean-MF-X-DMA model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    12. Zhang, Qi & Di, Peng & Farnoosh, Arash, 2021. "Study on the impacts of Shanghai crude oil futures on global oil market and oil industry based on VECM and DAG models," Energy, Elsevier, vol. 223(C).
    13. Jiqian Wang & Feng Ma & M.I.M. Wahab & Dengshi Huang, 2021. "Forecasting China's Crude Oil Futures Volatility: The Role of the Jump, Jumps Intensity, and Leverage Effect," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 921-941, August.
    14. Yang, Yuying & Ma, Yan-Ran & Hu, Min & Zhang, Dayong & Ji, Qiang, 2021. "Extreme risk spillover between chinese and global crude oil futures," Finance Research Letters, Elsevier, vol. 40(C).
    15. Sun, Chuanwang & Min, Jialin & Sun, Jiacheng & Gong, Xu, 2023. "The role of China's crude oil futures in world oil futures market and China's financial market," Energy Economics, Elsevier, vol. 120(C).
    16. Xu, Lin & Wu, Chenyang & Qin, Quande & Lin, Xiaoying, 2022. "Spillover effects and nonlinear correlations between carbon emissions and stock markets: An empirical analysis of China's carbon-intensive industries," Energy Economics, Elsevier, vol. 111(C).
    17. Wang, Yi & Sun, Qi & Zhang, Zilu & Chen, Liqing, 2022. "A risk measure of the stock market that is based on multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    18. Naeem, Muhammad Abubakr & Gul, Raazia & Shafiullah, Muhammad & Karim, Sitara & Lucey, Brian M., 2024. "Tail risk spillovers between Shanghai oil and other markets," Energy Economics, Elsevier, vol. 130(C).
    19. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    20. Yang, Kun & Wei, Yu & Li, Shouwei & Liu, Liang & Wang, Lei, 2021. "Global financial uncertainties and China’s crude oil futures market: Evidence from interday and intraday price dynamics," Energy Economics, Elsevier, vol. 96(C).
    21. Liu, Yang & Dilanchiev, Azer & Xu, Kaifei & Hajiyeva, Aytan Merdan, 2022. "Financing SMEs and business development as new post Covid-19 economic recovery determinants," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 554-567.
    22. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2022. "The growth of oil futures in China: Evidence of market maturity through global crises," Energy Economics, Elsevier, vol. 114(C).
    23. Shao Ying-Hui & Liu Ying-Lin & Yang Yan-Hong, 2022. "The short-term effect of COVID-19 pandemic on China's crude oil futures market: A study based on multifractal analysis," Papers 2204.05199, arXiv.org.
    24. Naeem, Muhammad Abubakr & Farid, Saqib & Yousaf, Imran & Kang, Sang Hoon, 2023. "Asymmetric efficiency in petroleum markets before and during COVID-19," Resources Policy, Elsevier, vol. 86(PA).
    25. Qiang Ji & Dayong Zhang & Yuqian Zhao, 2022. "Intra-day co-movements of crude oil futures: China and the international benchmarks," Annals of Operations Research, Springer, vol. 313(1), pages 77-103, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.