IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v53y2021i22p2500-2526.html
   My bibliography  Save this article

The role of high-frequency data in volatility forecasting: evidence from the China stock market

Author

Listed:
  • Min Liu
  • Chien-Chiang Lee
  • Wei-Chong Choo

Abstract

This research investigates the role of high-frequency data in volatility forecasting of the China stock market by particularly feeding different frequency return series directly into a large number of GARCH versions. The contributions of this research are as follows. 1) We provide clear evidence to support that the superiority of traditional time series models in volatility forecasting remains by taking advantage of high-frequency data. 2) We incorporate different distribution assumptions in GARCH models to capture the stylized facts of high-frequency data. The result shows that: 1) data frequency in GARCH application substantially influence the accuracy of volatility forecasting, as the higher the frequency is of the return series, the better are the forecasts provided; 2) non-normal distributions such as skewed student-t and generalized error distribution are more capable at reproducing the stylized facts of both intraday and daily return series than normal distribution; and 3) GARCH estimated by 5-min returns not only outperforms other GARCH alternatives, but also considerably beats RV-based models such as HAR and ARFIMA at volatility forecasting.

Suggested Citation

  • Min Liu & Chien-Chiang Lee & Wei-Chong Choo, 2021. "The role of high-frequency data in volatility forecasting: evidence from the China stock market," Applied Economics, Taylor & Francis Journals, vol. 53(22), pages 2500-2526, May.
  • Handle: RePEc:taf:applec:v:53:y:2021:i:22:p:2500-2526
    DOI: 10.1080/00036846.2020.1862747
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2020.1862747
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2020.1862747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Min & Guo, Tongji & Ping, Weiying & Luo, Liangqing, 2023. "Sustainability and stability: Will ESG investment reduce the return and volatility spillover effects across the Chinese financial market?," Energy Economics, Elsevier, vol. 121(C).
    2. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    3. Liu, Min, 2022. "The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 288-309.
    4. Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
    5. Hung, Ying-Shu & Lee, Chingnun & Chen, Pei-Fen, 2022. "China’s monetary policy and global stock markets: A new cointegration approach with smoothing structural changes," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 643-666.
    6. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    7. Huang, Yirong & Luo, Yi, 2024. "Forecasting conditional volatility based on hybrid GARCH-type models with long memory, regime switching, leverage effect and heavy-tail: Further evidence from equity market," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    8. Liu, Min & Lee, Chien-Chiang, 2022. "Is gold a long-run hedge, diversifier, or safe haven for oil? Empirical evidence based on DCC-MIDAS," Resources Policy, Elsevier, vol. 76(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:53:y:2021:i:22:p:2500-2526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.