IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v71y2018i4d10.1007_s10898-017-0577-y.html
   My bibliography  Save this article

Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness

Author

Listed:
  • Radu Baltean-Lugojan

    (Imperial College London)

  • Ruth Misener

    (Imperial College London)

Abstract

The standard pooling problem is a NP-hard subclass of non-convex quadratically-constrained optimization problems that commonly arises in process systems engineering applications. We take a parametric approach to uncovering topological structure and sparsity, focusing on the single quality standard pooling problem in its p-formulation. The structure uncovered in this approach validates Professor Christodoulos A. Floudas’ intuition that pooling problems are rooted in piecewise-defined functions. We introduce dominant active topologies under relaxed flow availability to explicitly identify pooling problem sparsity and show that the sparse patterns of active topological structure are associated with a piecewise objective function. Finally, the paper explains the conditions under which sparsity vanishes and where the combinatorial complexity emerges to cross over the P / NP boundary. We formally present the results obtained and their derivations for various specialized single quality pooling problem subclasses.

Suggested Citation

  • Radu Baltean-Lugojan & Ruth Misener, 2018. "Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness," Journal of Global Optimization, Springer, vol. 71(4), pages 655-690, August.
  • Handle: RePEc:spr:jglopt:v:71:y:2018:i:4:d:10.1007_s10898-017-0577-y
    DOI: 10.1007/s10898-017-0577-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0577-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0577-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammed Alfaki & Dag Haugland, 2013. "Strong formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 56(3), pages 897-916, July.
    2. Dag Haugland & Eligius M. T. Hendrix, 2016. "Pooling Problems with Polynomial-Time Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 591-615, August.
    3. Billy Rigby & Leon S. Lasdon & Allan D. Waren, 1995. "The Evolution of Texaco’s Blending Systems: From OMEGA to StarBlend," Interfaces, INFORMS, vol. 25(5), pages 64-83, October.
    4. Scott Kolodziej & Pedro Castro & Ignacio Grossmann, 2013. "Global optimization of bilinear programs with a multiparametric disaggregation technique," Journal of Global Optimization, Springer, vol. 57(4), pages 1039-1063, December.
    5. E. M. L. Beale & P. J. Coen & A. D. J. Flowerdew, 1965. "Separable Programming Applied to an Ore Purchasing Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 14(2-3), pages 89-101, November.
    6. Akshay Gupte & Shabbir Ahmed & Santanu S. Dey & Myun Seok Cheon, 2017. "Relaxations and discretizations for the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 631-669, March.
    7. Charles Audet & Jack Brimberg & Pierre Hansen & Sébastien Le Digabel & Nenad Mladenovi'{c}, 2004. "Pooling Problem: Alternate Formulations and Solution Methods," Management Science, INFORMS, vol. 50(6), pages 761-776, June.
    8. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2017. "A polynomially solvable case of the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 621-630, March.
    9. Faiz A. Al-Khayyal & James E. Falk, 1983. "Jointly Constrained Biconvex Programming," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 273-286, May.
    10. Thomas E. Baker & Leon S. Lasdon, 1985. "Successive Linear Programming at Exxon," Management Science, INFORMS, vol. 31(3), pages 264-274, March.
    11. Santanu S. Dey & Akshay Gupte, 2015. "Analysis of MILP Techniques for the Pooling Problem," Operations Research, INFORMS, vol. 63(2), pages 412-427, April.
    12. Calvin W. DeWitt & Leon S. Lasdon & Allan D. Waren & Donald A. Brenner & Simon A. Melhem, 1989. "OMEGA: An Improved Gasoline Blending System for Texaco," Interfaces, INFORMS, vol. 19(1), pages 85-101, February.
    13. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    14. Mohammed Alfaki & Dag Haugland, 2013. "A multi-commodity flow formulation for the generalized pooling problem," Journal of Global Optimization, Springer, vol. 56(3), pages 917-937, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santanu S. Dey & Burak Kocuk & Asteroide Santana, 2020. "Convexifications of rank-one-based substructures in QCQPs and applications to the pooling problem," Journal of Global Optimization, Springer, vol. 77(2), pages 227-272, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2017. "A polynomially solvable case of the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 621-630, March.
    2. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2016. "New multi-commodity flow formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 66(4), pages 669-710, December.
    3. Mohammed Alfaki & Dag Haugland, 2014. "A cost minimization heuristic for the pooling problem," Annals of Operations Research, Springer, vol. 222(1), pages 73-87, November.
    4. Dag Haugland & Eligius M. T. Hendrix, 2016. "Pooling Problems with Polynomial-Time Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 591-615, August.
    5. Santanu S. Dey & Burak Kocuk & Asteroide Santana, 2020. "Convexifications of rank-one-based substructures in QCQPs and applications to the pooling problem," Journal of Global Optimization, Springer, vol. 77(2), pages 227-272, June.
    6. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    7. Akshay Gupte & Shabbir Ahmed & Santanu S. Dey & Myun Seok Cheon, 2017. "Relaxations and discretizations for the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 631-669, March.
    8. Yifu Chen & Christos T. Maravelias, 2020. "Preprocessing algorithm and tightening constraints for multiperiod blend scheduling: cost minimization," Journal of Global Optimization, Springer, vol. 77(3), pages 603-625, July.
    9. Fischetti, Matteo & Monaci, Michele, 2020. "A branch-and-cut algorithm for Mixed-Integer Bilinear Programming," European Journal of Operational Research, Elsevier, vol. 282(2), pages 506-514.
    10. Ted Kutz & Mark Davis & Robert Creek & Nick Kenaston & Craig Stenstrom & Margery Connor, 2014. "Optimizing Chevron’s Refineries," Interfaces, INFORMS, vol. 44(1), pages 39-54, February.
    11. Ahmadreza Marandi & Joachim Dahl & Etienne Klerk, 2018. "A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem," Annals of Operations Research, Springer, vol. 265(1), pages 67-92, June.
    12. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    13. Marandi, Ahmadreza & Dahl, Joachim & de Klerk, Etienne, 2018. "A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem," Other publications TiSEM 981f1428-4d42-4d3f-9a7a-7, Tilburg University, School of Economics and Management.
    14. Charles Audet & Jack Brimberg & Pierre Hansen & Sébastien Le Digabel & Nenad Mladenovi'{c}, 2004. "Pooling Problem: Alternate Formulations and Solution Methods," Management Science, INFORMS, vol. 50(6), pages 761-776, June.
    15. Santanu S. Dey & Akshay Gupte, 2015. "Analysis of MILP Techniques for the Pooling Problem," Operations Research, INFORMS, vol. 63(2), pages 412-427, April.
    16. Yifu Chen & Christos T. Maravelias, 2022. "Variable Bound Tightening and Valid Constraints for Multiperiod Blending," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2073-2090, July.
    17. Harsha Nagarajan & Mowen Lu & Site Wang & Russell Bent & Kaarthik Sundar, 2019. "An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs," Journal of Global Optimization, Springer, vol. 74(4), pages 639-675, August.
    18. Benhamou, Latifa & Giard, Vincent & Khouloud, Mehdi & Fenies, Pierres & Fontane, Frédéric, 2020. "Reverse Blending: An economically efficient approach to the challenge of fertilizer mass customization," International Journal of Production Economics, Elsevier, vol. 226(C).
    19. Tiago Andrade & Fabricio Oliveira & Silvio Hamacher & Andrew Eberhard, 2019. "Enhancing the normalized multiparametric disaggregation technique for mixed-integer quadratic programming," Journal of Global Optimization, Springer, vol. 73(4), pages 701-722, April.
    20. Dimitri J. Papageorgiou & Alejandro Toriello & George L. Nemhauser & Martin W. P. Savelsbergh, 2012. "Fixed-Charge Transportation with Product Blending," Transportation Science, INFORMS, vol. 46(2), pages 281-295, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:71:y:2018:i:4:d:10.1007_s10898-017-0577-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.