IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8035806.html
   My bibliography  Save this article

Energy-Aware Flexible Job Shop Scheduling Using Mixed Integer Programming and Constraint Programming

Author

Listed:
  • Andy Ham
  • Myoung-Ju Park
  • Kyung Min Kim

Abstract

Compromising productivity in exchange for energy saving does not appeal to highly capitalized manufacturing industries. However, we might be able to maintain the same productivity while significantly reducing energy consumption. This paper addresses a flexible job shop scheduling problem with a shutdown (on/off) strategy aiming to minimize makespan and total energy consumption. First, an alternative mixed integer linear programming model is proposed. Second, a novel constraint programming is proposed. Third, practical operational scenarios are compared. Finally, we provide benchmarking instances, CPLEX codes, and genetic algorithm codes, in order to promote related research, thus expediting the adoption of energy-efficient scheduling in manufacturing facilities. The computational study demonstrates that (1) the proposed models significantly outperform other benchmark models and (2) we can maintain maximum productivity while significantly reducing energy consumption by 14.85% (w/o shutdown) and 15.23% (w/shutdown) on average.

Suggested Citation

  • Andy Ham & Myoung-Ju Park & Kyung Min Kim, 2021. "Energy-Aware Flexible Job Shop Scheduling Using Mixed Integer Programming and Constraint Programming," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, June.
  • Handle: RePEc:hin:jnlmpe:8035806
    DOI: 10.1155/2021/8035806
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/8035806.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/8035806.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/8035806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    2. Wen, Xuanhao & Cao, Huajun & Li, Hongcheng & Zheng, Jie & Ge, Weiwei & Chen, Erheng & Gao, Xi & Hon, Bernard, 2022. "A dual energy benchmarking methodology for energy-efficient production planning and operation of discrete manufacturing systems using data mining techniques," Energy, Elsevier, vol. 255(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8035806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.