IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v59y2021i23p7216-7231.html
   My bibliography  Save this article

Multi-objective optimisation for energy-aware flexible job-shop scheduling problem with assembly operations

Author

Listed:
  • Weibo Ren
  • Jingqian Wen
  • Yan Yan
  • Yaoguang Hu
  • Yu Guan
  • Jinliang Li

Abstract

There is a lack of studies on joint optimisation of flexible job-shop scheduling problem (FJSP) considering energy consumption and production efficiency in the machining-assembly system. Thus, in this paper, we propose a methodology for multi-objective optimisation of energy-aware flexible job-shop scheduling during machining and assembly operations. First, a mixed integrated mathematical model is developed to improve production efficiency and minimise energy consumption. Then, a novel heuristic algorithm integrated particle swarm optimisation (PSO) and genetic algorithm (GA) is developed to address the established multi-objective problem. Moreover, numerical examples are carried out to verify the validity and performance of the solving methods in achieving energy awareness in the manufacturing system. Computational results are presented to demonstrate the advantage of solving the problem compared with the exact method and common heuristic algorithms, and the trade-off between production efficiency and energy efficiency is analysed to make the final decision for managers.

Suggested Citation

  • Weibo Ren & Jingqian Wen & Yan Yan & Yaoguang Hu & Yu Guan & Jinliang Li, 2021. "Multi-objective optimisation for energy-aware flexible job-shop scheduling problem with assembly operations," International Journal of Production Research, Taylor & Francis Journals, vol. 59(23), pages 7216-7231, December.
  • Handle: RePEc:taf:tprsxx:v:59:y:2021:i:23:p:7216-7231
    DOI: 10.1080/00207543.2020.1836421
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1836421
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1836421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João M. R. C. Fernandes & Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2022. "Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
    2. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    3. M. Hajibabaei & J. Behnamian, 2023. "Fuzzy cleaner production in assembly flexible job-shop scheduling with machine breakdown and batch transportation: Lagrangian relaxation," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-26, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:59:y:2021:i:23:p:7216-7231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.