IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v306y2023i2p849-871.html
   My bibliography  Save this article

A multistage distributionally robust optimization approach to water allocation under climate uncertainty

Author

Listed:
  • Park, Jangho
  • Bayraksan, Güzin

Abstract

This paper investigates a Multistage Distributionally Robust Optimization (MDRO) approach to water allocation under climate uncertainty. The MDRO is formed by creating sets of conditional distributions (called conditional ambiguity sets) on a finite scenario tree. The distributions in the conditional ambiguity sets remain close to a nominal conditional distribution according a ϕ-divergence (e.g., Kullback-Leibler divergence, Hellinger distance, Burg entropy, etc.). The paper discusses a decomposition algorithm to solve the resulting MDRO with ϕ-divergences, which uses the dual formulation and solves only linear subproblems instead of convex ones. Some properties of the algorithm such as generating feasible policies and valid upper/lower bounds are established. The paper then applies the modeling and solution techniques to allocate water in a rapidly-developing area of Tucson, Arizona. Tucson, like many arid and semi-arid regions around the world, faces considerable uncertainty in its ability to provide water for its citizens in the future. The primary sources of uncertainty in the Tucson region include (1) unpredictable population growth, (2) the availability of water from the Colorado River, and (3) the effects of climate variability on water consumption. This paper integrates forecasts for all these sources of uncertainty into a single optimization model for robust and sustainable water allocation. Then, it uses this model to analyze the value of constructing additional treatment facilities to reduce future water shortages. The results indicate that the MDRO approach can be very valuable for water managers by providing insights to minimize their risks and help them plan for the future.

Suggested Citation

  • Park, Jangho & Bayraksan, Güzin, 2023. "A multistage distributionally robust optimization approach to water allocation under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 306(2), pages 849-871.
  • Handle: RePEc:eee:ejores:v:306:y:2023:i:2:p:849-871
    DOI: 10.1016/j.ejor.2022.06.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722005240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.06.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Uncertainty," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 5, pages 145-154, World Scientific Publishing Co. Pte. Ltd..
    2. Marca Weinberg & Catherine L. Kling & James E. Wilen, 1993. "Water Markets and Water Quality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(2), pages 278-291.
    3. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2019. "Robust Dual Dynamic Programming," Operations Research, INFORMS, vol. 67(3), pages 813-830, May.
    4. Breuer, Thomas & Csiszár, Imre, 2013. "Systematic stress tests with entropic plausibility constraints," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1552-1559.
    5. Vishal Gupta, 2019. "Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(9), pages 4242-4260, September.
    6. Jeffrey O’Hara & Konstantine Georgakakos, 2008. "Quantifying the Urban Water Supply Impacts of Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1477-1497, October.
    7. Pichler, Alois & Schlotter, Ruben, 2020. "Entropy based risk measures," European Journal of Operational Research, Elsevier, vol. 285(1), pages 223-236.
    8. A. B. Philpott & V. L. Matos & L. Kapelevich, 2018. "Distributionally robust SDDP," Computational Management Science, Springer, vol. 15(3), pages 431-454, October.
    9. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    10. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    11. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    12. Andy Philpott & Vitor de Matos & Erlon Finardi, 2013. "On Solving Multistage Stochastic Programs with Coherent Risk Measures," Operations Research, INFORMS, vol. 61(4), pages 957-970, August.
    13. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    14. Robert, Marion & Bergez, Jacques-Eric & Thomas, Alban, 2018. "A stochastic dynamic programming approach to analyze adaptation to climate change – Application to groundwater irrigation in India," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1033-1045.
    15. Rahimian, Hamed & Bayraksan, Güzin & Homem-de-Mello, Tito, 2019. "Controlling risk and demand ambiguity in newsvendor models," European Journal of Operational Research, Elsevier, vol. 279(3), pages 854-868.
    16. Löhndorf, Nils & Shapiro, Alexander, 2019. "Modeling time-dependent randomness in stochastic dual dynamic programming," European Journal of Operational Research, Elsevier, vol. 273(2), pages 650-661.
    17. Shapiro, Alexander, 2021. "Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 288(1), pages 1-13.
    18. Smith, Stanley K. & Sincich, Terry, 1992. "Evaluating the forecast accuracy and bias of alternative population projections for states," International Journal of Forecasting, Elsevier, vol. 8(3), pages 495-508, November.
    19. Thomas Breuer & Imre Csiszár, 2016. "Measuring Distribution Model Risk," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 395-411, April.
    20. Bita Analui & Georg Pflug, 2014. "On distributionally robust multiperiod stochastic optimization," Computational Management Science, Springer, vol. 11(3), pages 197-220, July.
    21. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    22. Javier Calatrava & Alberto Garrido, 2005. "Spot water markets and risk in water supply," Agricultural Economics, International Association of Agricultural Economists, vol. 33(2), pages 131-143, September.
    23. Haodong Yu & Jie Sun & Yanjun Wang, 2021. "A time-consistent Benders decomposition method for multistage distributionally robust stochastic optimization with a scenario tree structure," Computational Optimization and Applications, Springer, vol. 79(1), pages 67-99, May.
    24. Karthik Murali & Michael K. Lim & Nicholas C. Petruzzi, 2015. "Municipal Groundwater Management: Optimal Allocation and Control of a Renewable Natural Resource," Production and Operations Management, Production and Operations Management Society, vol. 24(9), pages 1453-1472, September.
    25. Paucar-Caceres, A. & Bandala, E.R. & Wright, G.H., 2017. "The impact of global climate change on water quantity and quality: A system dynamics approach to the US–Mexican transborder regionAuthor-Name: Duran-Encalada, J.A," European Journal of Operational Research, Elsevier, vol. 256(2), pages 567-581.
    26. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    27. Alexander Shapiro, 2016. "Rectangular Sets of Probability Measures," Operations Research, INFORMS, vol. 64(2), pages 528-541, April.
    28. P. Girardeau & V. Leclere & A. B. Philpott, 2015. "On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 130-145, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thuener Silva & Davi Valladão & Tito Homem-de-Mello, 2021. "A data-driven approach for a class of stochastic dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 80(3), pages 687-729, December.
    2. Haodong Yu & Jie Sun & Yanjun Wang, 2021. "A time-consistent Benders decomposition method for multistage distributionally robust stochastic optimization with a scenario tree structure," Computational Optimization and Applications, Springer, vol. 79(1), pages 67-99, May.
    3. Oscar Dowson & Lea Kapelevich, 2021. "SDDP.jl : A Julia Package for Stochastic Dual Dynamic Programming," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 27-33, January.
    4. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    5. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    6. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    7. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    8. Sosung Baik & Sung-Ha Hwang, 2021. "Auction design with ambiguity: Optimality of the first-price and all-pay auctions," Papers 2110.08563, arXiv.org.
    9. Guigues, Vincent & Juditsky, Anatoli & Nemirovski, Arkadi, 2021. "Constant Depth Decision Rules for multistage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 295(1), pages 223-232.
    10. Thomas Breuer & Martin Summer, 2013. "Stress Test Robustness: Recent Advances and Open Problems," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 25, pages 74-86.
    11. Vincent Guigues & Renato D. C. Monteiro, 2021. "Stochastic Dynamic Cutting Plane for Multistage Stochastic Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 513-559, May.
    12. Guigues, Vincent & Shapiro, Alexander & Cheng, Yi, 2023. "Duality and sensitivity analysis of multistage linear stochastic programs," European Journal of Operational Research, Elsevier, vol. 308(2), pages 752-767.
    13. Sosung Baik & Sung-Ha Hwang, 2022. "Revenue Comparisons of Auctions with Ambiguity Averse Sellers," Papers 2211.12669, arXiv.org.
    14. Tommi Ekholm & Erin Baker, 2022. "Multiple Beliefs, Dominance and Dynamic Consistency," Management Science, INFORMS, vol. 68(1), pages 529-540, January.
    15. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    16. Lunhao Ju & Jiang Jiang & Luofu Wu & Jianbin Sun, 2024. "A Sample Average Approximation Approach for Stochastic Optimization of Flight Test Planning with Sorties Uncertainty," Mathematics, MDPI, vol. 12(19), pages 1-20, September.
    17. Löhndorf, Nils & Wozabal, David, 2021. "Gas storage valuation in incomplete markets," European Journal of Operational Research, Elsevier, vol. 288(1), pages 318-330.
    18. Lorenzo Reus & Rodolfo Prado, 2022. "Need to Meet Investment Goals? Track Synthetic Indexes with the SDDP Method," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 47-69, June.
    19. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    20. Liu, Rui Peng & Shapiro, Alexander, 2020. "Risk neutral reformulation approach to risk averse stochastic programming," European Journal of Operational Research, Elsevier, vol. 286(1), pages 21-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:306:y:2023:i:2:p:849-871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.