IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p3024-d1487741.html
   My bibliography  Save this article

A Sample Average Approximation Approach for Stochastic Optimization of Flight Test Planning with Sorties Uncertainty

Author

Listed:
  • Lunhao Ju

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Jiang Jiang

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Luofu Wu

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Jianbin Sun

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract

In the context of flight test planning, numerous uncertainties exist, encompassing aircraft status, number of flights, and weather conditions, among others. These uncertainties ultimately manifest significantly in the actual number of flight sorties executed, rendering high significance to engineering problems related to the execution of flight test missions. However, there is a dearth of research in this specific aspect. To address this gap, this paper proposes an opportunity-constrained integer programming model tailored to the unique characteristics of the problem. To handle the uncertainties, Sample Average Approximation (SAA) is employed to perform oversampling of the uncertain parameters, followed by the Adaptive Large Neighborhood Search (ALNS) algorithm to solve for the optimal solution and objective function value. Results from numerical experiments conducted at varying scales and validated with diverse sampling distributions demonstrate the effectiveness and robustness of the proposed methodology. By decoding the generated execution sequences, comprehensive mission planning schemes can be derived. This approach yields sequences that exhibit commendable feasibility and robustness for the flight test planning problem with sorties uncertainty (FTPPSU), offering valuable support for the efficient execution of future flight test missions.

Suggested Citation

  • Lunhao Ju & Jiang Jiang & Luofu Wu & Jianbin Sun, 2024. "A Sample Average Approximation Approach for Stochastic Optimization of Flight Test Planning with Sorties Uncertainty," Mathematics, MDPI, vol. 12(19), pages 1-20, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3024-:d:1487741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/3024/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/3024/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ropke, Stefan & Pisinger, David, 2006. "A unified heuristic for a large class of Vehicle Routing Problems with Backhauls," European Journal of Operational Research, Elsevier, vol. 171(3), pages 750-775, June.
    2. Lu, Chang & Wu, Yuehui & Yu, Shanchuan, 2022. "A Sample Average Approximation Approach for the Stochastic Dial-A-Ride Problem on a Multigraph with User Satisfaction," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1031-1044.
    3. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    4. Andy Philpott & Vitor de Matos & Erlon Finardi, 2013. "On Solving Multistage Stochastic Programs with Coherent Risk Measures," Operations Research, INFORMS, vol. 61(4), pages 957-970, August.
    5. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    6. Camilo Mancilla & Robert Storer, 2012. "A sample average approximation approach to stochastic appointment sequencing and scheduling," IISE Transactions, Taylor & Francis Journals, vol. 44(8), pages 655-670.
    7. Yu, Vincent F. & Anh, Pham Tuan & Baldacci, Roberto, 2023. "A robust optimization approach for the vehicle routing problem with cross-docking under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    8. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    9. Schütz, Peter & Tomasgard, Asgeir & Ahmed, Shabbir, 2009. "Supply chain design under uncertainty using sample average approximation and dual decomposition," European Journal of Operational Research, Elsevier, vol. 199(2), pages 409-419, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Jangho & Bayraksan, Güzin, 2023. "A multistage distributionally robust optimization approach to water allocation under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 306(2), pages 849-871.
    2. Liu, Rui Peng & Shapiro, Alexander, 2020. "Risk neutral reformulation approach to risk averse stochastic programming," European Journal of Operational Research, Elsevier, vol. 286(1), pages 21-31.
    3. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    4. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    5. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    6. A. B. Philpott & V. L. Matos & L. Kapelevich, 2018. "Distributionally robust SDDP," Computational Management Science, Springer, vol. 15(3), pages 431-454, October.
    7. Pedro Borges, 2022. "Cut-sharing across trees and efficient sequential sampling for SDDP with uncertainty in the RHS," Computational Optimization and Applications, Springer, vol. 82(3), pages 617-647, July.
    8. Schur, Rouven & Gönsch, Jochen & Hassler, Michael, 2019. "Time-consistent, risk-averse dynamic pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 587-603.
    9. Guigues, Vincent & Shapiro, Alexander & Cheng, Yi, 2023. "Duality and sensitivity analysis of multistage linear stochastic programs," European Journal of Operational Research, Elsevier, vol. 308(2), pages 752-767.
    10. Löhndorf, Nils & Wozabal, David, 2021. "Gas storage valuation in incomplete markets," European Journal of Operational Research, Elsevier, vol. 288(1), pages 318-330.
    11. Lorenzo Reus & Rodolfo Prado, 2022. "Need to Meet Investment Goals? Track Synthetic Indexes with the SDDP Method," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 47-69, June.
    12. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    13. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    14. Xing, Xinjie & Song, Dongping & Qiu, Chengfeng & Drake, Paul R. & Zhan, Yuanzhu, 2023. "Joint tank container demurrage policy and flow optimisation using a progressive hedging algorithm with expanded time-space network," European Journal of Operational Research, Elsevier, vol. 307(2), pages 663-679.
    15. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    16. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    17. Thuener Silva & Davi Valladão & Tito Homem-de-Mello, 2021. "A data-driven approach for a class of stochastic dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 80(3), pages 687-729, December.
    18. Václav Kozmík, 2015. "On variance reduction of mean-CVaR Monte Carlo estimators," Computational Management Science, Springer, vol. 12(2), pages 221-242, April.
    19. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    20. Lin, Cheng-Chang & Wu, Yi-Chen, 2013. "Optimal pricing for build-to-order supply chain design under price-dependent stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 31-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3024-:d:1487741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.