IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v295y2021i1p223-232.html
   My bibliography  Save this article

Constant Depth Decision Rules for multistage optimization under uncertainty

Author

Listed:
  • Guigues, Vincent
  • Juditsky, Anatoli
  • Nemirovski, Arkadi

Abstract

In this paper, we introduce a new class of decision rules, referred to as Constant Depth Decision Rules (CDDRs), for multistage optimization under linear constraints with uncertainty-affected right-hand sides. We consider two uncertainty classes: discrete uncertainties which can take at each stage at most a fixed number d of different values, and polytopic uncertainties which, at each stage, are elements of a convex hull of at most d points. Given the depthμ of the decision rule, the decision at stage t is expressed as the sum of t functions of μ consecutive values of the underlying uncertain parameters. These functions are arbitrary in the case of discrete uncertainties and are poly-affine in the case of polytopic uncertainties. For these uncertainty classes, we show that when the uncertain right-hand sides of the constraints of the multistage problem are of the same additive structure as the decision rules, these constraints can be reformulated as a system of linear inequality constraints where the numbers of variables and constraints is O(1)(n+m)dμN2 with n the maximal dimension of control variables, m the maximal number of inequality constraints at each stage, and N the number of stages.

Suggested Citation

  • Guigues, Vincent & Juditsky, Anatoli & Nemirovski, Arkadi, 2021. "Constant Depth Decision Rules for multistage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 295(1), pages 223-232.
  • Handle: RePEc:eee:ejores:v:295:y:2021:i:1:p:223-232
    DOI: 10.1016/j.ejor.2021.02.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721001557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.02.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vincent Guigues, 2014. "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning," Computational Optimization and Applications, Springer, vol. 57(1), pages 167-203, January.
    2. A. Charnes & W. W. Cooper & G. H. Symonds, 1958. "Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil," Management Science, INFORMS, vol. 4(3), pages 235-263, April.
    3. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    4. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    5. Rocha, Paula & Kuhn, Daniel, 2012. "Multistage stochastic portfolio optimisation in deregulated electricity markets using linear decision rules," European Journal of Operational Research, Elsevier, vol. 216(2), pages 397-408.
    6. P. Girardeau & V. Leclere & A. B. Philpott, 2015. "On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 130-145, February.
    7. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    8. Álvaro Lorca & X. Andy Sun & Eugene Litvinov & Tongxin Zheng, 2016. "Multistage Adaptive Robust Optimization for the Unit Commitment Problem," Operations Research, INFORMS, vol. 64(1), pages 32-51, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dwivedi, Pankaj Prasad & Sharma, Dilip Kumar, 2023. "Evaluation and ranking of battery electric vehicles by Shannon’s entropy and TOPSIS methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 457-474.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    2. Park, Jangho & Bayraksan, Güzin, 2023. "A multistage distributionally robust optimization approach to water allocation under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 306(2), pages 849-871.
    3. Oscar Dowson & Lea Kapelevich, 2021. "SDDP.jl : A Julia Package for Stochastic Dual Dynamic Programming," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 27-33, January.
    4. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
    5. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    6. Vincent Guigues & Renato D. C. Monteiro, 2021. "Stochastic Dynamic Cutting Plane for Multistage Stochastic Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 513-559, May.
    7. Zhou, Shaorui & Zhang, Hui & Shi, Ning & Xu, Zhou & Wang, Fan, 2020. "A new convergent hybrid learning algorithm for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 283(1), pages 33-46.
    8. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    9. Pritchard, Geoffrey, 2015. "Stochastic inflow modeling for hydropower scheduling problems," European Journal of Operational Research, Elsevier, vol. 246(2), pages 496-504.
    10. Hang Li & Zhe Zhang & Xianggen Yin & Buhan Zhang, 2020. "Preventive Security-Constrained Optimal Power Flow with Probabilistic Guarantees," Energies, MDPI, vol. 13(9), pages 1-13, May.
    11. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    12. Wenqing Chen & Melvyn Sim, 2009. "Goal-Driven Optimization," Operations Research, INFORMS, vol. 57(2), pages 342-357, April.
    13. Maji, Chandi Charan, 1975. "Intertemporal allocation of irrigation water in the Mayurakshi Project (India): an application of deterministic and chance-constrained linear programming," ISU General Staff Papers 197501010800006381, Iowa State University, Department of Economics.
    14. Yongjia Song & Minjiao Zhang, 2015. "Chance‐constrained multi‐terminal network design problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 321-334, June.
    15. Escudero, Laureano F. & Monge, Juan F. & Rodríguez-Chía, Antonio M., 2020. "On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 262-279.
    16. Rashed Khanjani Shiraz & Madjid Tavana & Hirofumi Fukuyama, 2021. "A joint chance-constrained data envelopment analysis model with random output data," Operational Research, Springer, vol. 21(2), pages 1255-1277, June.
    17. Guigues, Vincent, 2017. "Dual Dynamic Programing with cut selection: Convergence proof and numerical experiments," European Journal of Operational Research, Elsevier, vol. 258(1), pages 47-57.
    18. Charles Gauvin & Erick Delage & Michel Gendreau, 2018. "A successive linear programming algorithm with non-linear time series for the reservoir management problem," Computational Management Science, Springer, vol. 15(1), pages 55-86, January.
    19. Vincent Guigues, 2014. "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning," Computational Optimization and Applications, Springer, vol. 57(1), pages 167-203, January.
    20. Aldasoro, Unai & Escudero, Laureano F. & Merino, María & Pérez, Gloria, 2017. "A parallel Branch-and-Fix Coordination based matheuristic algorithm for solving large sized multistage stochastic mixed 0–1 problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 590-606.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:295:y:2021:i:1:p:223-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.