IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i4p785-797..html
   My bibliography  Save this article

Variable selection in regression with compositional covariates

Author

Listed:
  • Wei Lin
  • Pixu Shi
  • Rui Feng
  • Hongzhe Li

Abstract

Motivated by research problems arising in the analysis of gut microbiome and metagenomic data, we consider variable selection and estimation in high-dimensional regression with compositional covariates. We propose an ℓ1 regularization method for the linear log-contrast model that respects the unique features of compositional data. We formulate the proposed procedure as a constrained convex optimization problem and introduce a coordinate descent method of multipliers for efficient computation. In the high-dimensional setting where the dimensionality grows at most exponentially with the sample size, model selection consistency and $\ell _{\infty }$ bounds for the resulting estimator are established under conditions that are mild and interpretable for compositional data. The numerical performance of our method is evaluated via simulation studies and its usefulness is illustrated by an application to a microbiome study relating human body mass index to gut microbiome composition.

Suggested Citation

  • Wei Lin & Pixu Shi & Rui Feng & Hongzhe Li, 2014. "Variable selection in regression with compositional covariates," Biometrika, Biometrika Trust, vol. 101(4), pages 785-797.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:4:p:785-797.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu031
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:4:p:785-797.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.