IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v136y2018icp4-9.html
   My bibliography  Save this article

Statistics in the big data era: Failures of the machine

Author

Listed:
  • Dunson, David B.

Abstract

There is vast interest in automated methods for complex data analysis. However, there is a lack of consideration of (1) interpretability, (2) uncertainty quantification, (3) applications with limited training data, and (4) selection bias. Statistical methods can achieve (1)-(4) with a change in focus.

Suggested Citation

  • Dunson, David B., 2018. "Statistics in the big data era: Failures of the machine," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 4-9.
  • Handle: RePEc:eee:stapro:v:136:y:2018:i:c:p:4-9
    DOI: 10.1016/j.spl.2018.02.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218300737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.02.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bowman, Adrian W., 2018. "Big questions, informative data, excellent science," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 34-36.
    2. Paola Perchinunno & Massimo Bilancia & Domenico Vitale, 2021. "A Statistical Analysis of Factors Affecting Higher Education Dropouts," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 341-362, August.
    3. Chakraborty, Tanujit & Chakraborty, Ashis Kumar & Murthy, C.A., 2019. "A nonparametric ensemble binary classifier and its statistical properties," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 16-23.
    4. Sarah Friedrich & Gerd Antes & Sigrid Behr & Harald Binder & Werner Brannath & Florian Dumpert & Katja Ickstadt & Hans A. Kestler & Johannes Lederer & Heinz Leitgöb & Markus Pauly & Ansgar Steland & A, 2022. "Is there a role for statistics in artificial intelligence?," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 823-846, December.
    5. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    6. Hassani, Hossein & Beneki, Christina & Silva, Emmanuel Sirimal & Vandeput, Nicolas & Madsen, Dag Øivind, 2021. "The science of statistics versus data science: What is the future?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Borgonovo, Emanuele & Ghidini, Valentina & Hahn, Roman & Plischke, Elmar, 2023. "Explaining classifiers with measures of statistical association," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    8. Emanuele Aliverti & Kristian Lum & James E. Johndrow & David B. Dunson, 2021. "Removing the influence of group variables in high‐dimensional predictive modelling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 791-811, July.
    9. Torrecilla, José L. & Romo, Juan, 2018. "Data learning from big data," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 15-19.
    10. Olhede, Sofia C. & Wolfe, Patrick J., 2018. "The future of statistics and data science," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 46-50.
    11. Shi, Wen & Chen, Xi, 2019. "Controlled Morris method: A new factor screening approach empowered by a distribution-free sequential multiple testing procedure," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 299-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:136:y:2018:i:c:p:4-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.