IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v172y2023ics1366554523000753.html
   My bibliography  Save this article

A reliable emergency logistics network for COVID-19 considering the uncertain time-varying demands

Author

Listed:
  • Zhang, Jianghua
  • Long, Daniel Zhuoyu
  • Li, Yuchen

Abstract

The evolving COVID-19 epidemic pose significant threats and challenges to emergency response operations. This paper focuses on designing an emergency logistic network, including the deployment of emergency facilities and the allocation of supplies to satisfy the time-varying demands. A Demand prediction-Network optimization-Decision adjustment framework is proposed for the emergency logistic network design. We first present an improved short-term epidemic model to predict the evolutionary trajectory of the epidemic. Then, considering the uncertainty of the estimated demands, we construct a capacitated multi-period, multi-echelon facility deployment and resource allocation robust optimization model to improve the reliability of the decisions. To address the conservativeness of robust solutions during the evolution of the epidemic, an uncertainty budget adjustment strategy is proposed and integrated into the rolling horizon optimization approach. The results of the case study show that (i) the short-term prediction method has higher accuracy and the accuracy increases with the amount of observed data; (ii) considering the demand uncertainty, the proposed robust optimization model combined with uncertainty budget adjustment strategy can improve the performance of the emergency logistic network; (iii) the proposed solution method is more efficient than its benchmark, especially for large-scale cases. Moreover, some managerial insights related to the emergency logistics network design problem are presented.

Suggested Citation

  • Zhang, Jianghua & Long, Daniel Zhuoyu & Li, Yuchen, 2023. "A reliable emergency logistics network for COVID-19 considering the uncertain time-varying demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:transe:v:172:y:2023:i:c:s1366554523000753
    DOI: 10.1016/j.tre.2023.103087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523000753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chad P. Bown, 2022. "How COVID‐19 Medical Supply Shortages Led to Extraordinary Trade and Industrial Policy," Asian Economic Policy Review, Japan Center for Economic Research, vol. 17(1), pages 114-135, January.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Shang, Xiaoting & Zhang, Guoqing & Jia, Bin & Almanaseer, Mohammed, 2022. "The healthcare supply location-inventory-routing problem: A robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Rachaniotis, Nikolaos P. & Dasaklis, Tom K. & Pappis, Costas P., 2012. "A deterministic resource scheduling model in epidemic control: A case study," European Journal of Operational Research, Elsevier, vol. 216(1), pages 225-231.
    5. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    7. Elisa F. Long & Eike Nohdurft & Stefan Spinler, 2018. "Spatial Resource Allocation for Emerging Epidemics: A Comparison of Greedy, Myopic, and Dynamic Policies," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 181-198, May.
    8. Alain, Guinet & Angel, Ruiz, 2016. "Modeling the logistics response to a bioterrorist anthrax attackAuthor-Name: Wanying, Chen," European Journal of Operational Research, Elsevier, vol. 254(2), pages 458-471.
    9. Enayati, Shakiba & Özaltın, Osman Y., 2020. "Optimal influenza vaccine distribution with equity," European Journal of Operational Research, Elsevier, vol. 283(2), pages 714-725.
    10. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    11. Yarmand, Hamed & Ivy, Julie S. & Denton, Brian & Lloyd, Alun L., 2014. "Optimal two-phase vaccine allocation to geographically different regions under uncertainty," European Journal of Operational Research, Elsevier, vol. 233(1), pages 208-219.
    12. Suresh Chand, 1983. "Rolling Horizon Procedures for the Facilities in Series Inventory Model with Nested Schedules," Management Science, INFORMS, vol. 29(2), pages 237-249, February.
    13. Yazdekhasti, Amin & Wang, Jun & Zhang, Li & Ma, Junfeng, 2021. "A multi-period multi-modal stochastic supply chain model under COVID pandemic: A poultry industry case study in Mississippi," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    14. Richard C. Larson, 2007. "Simple Models of Influenza Progression Within a Heterogeneous Population," Operations Research, INFORMS, vol. 55(3), pages 399-412, June.
    15. Ali Ekici & Pınar Keskinocak & Julie L. Swann, 2014. "Modeling Influenza Pandemic and Planning Food Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 11-27, February.
    16. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    17. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    18. Ming Liu & Xifen Xu & Jie Cao & Ding Zhang, 2020. "Integrated planning for public health emergencies: A modified model for controlling H1N1 pandemic," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(5), pages 748-761, May.
    19. Garrido, Rodrigo A. & Lamas, Patricio & Pino, Francisco J., 2015. "A stochastic programming approach for floods emergency logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 18-31.
    20. Liu, Kanglin & Liu, Changchun & Xiang, Xi & Tian, Zhili, 2023. "Testing facility location and dynamic capacity planning for pandemics with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 304(1), pages 150-168.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Lingpeng & Wang, Xudong & He, Junliang & Han, Chuanfeng & Hu, Shaolong, 2023. "A two-stage chance constrained stochastic programming model for emergency supply distribution considering dynamic uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Wu, Zhongqi & Jiang, Hui & Liang, Xiaoyu & Zhou, Yangye, 2024. "Multi-period distributionally robust emergency medical service location model with customized ambiguity sets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    3. Cao, Jianing & Han, Yuhang & Pan, Nan & Zhang, Jingcheng & Yang, Junwei, 2024. "A data-driven approach to urban charging facility expansion based on bi-level optimization: A case study in a Chinese city," Energy, Elsevier, vol. 300(C).
    4. Kargar, Bahareh & MohajerAnsari, Pedram & Esra Büyüktahtakın, İ. & Jahani, Hamed & Talluri, Sri, 2024. "Data-driven modeling for designing a sustainable and efficient vaccine supply chain: A COVID-19 case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    2. Xiaoyan Xu & Suresh P. Sethi & Sai‐Ho Chung & Tsan‐Ming Choi, 2023. "Reforming global supply chain management under pandemics: The GREAT‐3Rs framework," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 524-546, February.
    3. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    4. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    5. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    6. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2023. "Design of control strategies to help prevent the spread of COVID-19 pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 219-238.
    7. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    8. Sengul Orgut, Irem & Freeman, Nickolas & Lewis, Dwight & Parton, Jason, 2023. "Equitable and effective vaccine access considering vaccine hesitancy and capacity constraints," Omega, Elsevier, vol. 120(C).
    9. Wang, Xin & Jiang, Ruiwei & Qi, Mingyao, 2023. "A robust optimization problem for drone-based equitable pandemic vaccine distribution with uncertain supply," Omega, Elsevier, vol. 119(C).
    10. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    11. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
    12. Biswas, Debajyoti & Alfandari, Laurent, 2022. "Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1372-1391.
    13. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    14. Yılmaz, Ömer Faruk & Yeni, Fatma Betül & Gürsoy Yılmaz, Beren & Özçelik, Gökhan, 2023. "An optimization-based methodology equipped with lean tools to strengthen medical supply chain resilience during a pandemic: A case study from Turkey," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    15. Guihua Wang, 2022. "Stay at home to stay safe: Effectiveness of stay‐at‐home orders in containing the COVID‐19 pandemic," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2289-2305, May.
    16. Rey, David & Hammad, Ahmed W. & Saberi, Meead, 2023. "Vaccine allocation policy optimization and budget sharing mechanism using reinforcement learning," Omega, Elsevier, vol. 115(C).
    17. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    18. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    19. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    20. Büyüktahtakın, İ. Esra & des-Bordes, Emmanuel & Kıbış, Eyyüb Y., 2018. "A new epidemics–logistics model: Insights into controlling the Ebola virus disease in West Africa," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1046-1063.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:172:y:2023:i:c:s1366554523000753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.