IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v250y2022ics092552732200247x.html
   My bibliography  Save this article

Data pooling for multiple single-component systems under population heterogeneity

Author

Listed:
  • Dursun, İpek
  • Akçay, Alp
  • van Houtum, Geert-Jan

Abstract

We consider multiple newly designed single-component systems with a known finite lifespan. The component in each system can be replaced preventively to avoid a costly failure. This component is also in use for the first time, and therefore, there is no historical data on the lifetime of the component. In this case, the probability distribution of the component lifetime can be estimated based on expert opinions. However, there can be different opinions on the lifetime distribution. There are two populations where components can come from: a weak and a strong population. We assume that the components always come from the same population. However, the true type of the population is unknown. We build a discrete-time partially observable Markov decision process model to find the optimal replacement policy which minimizes the expected total cost throughout the lifespan. To resolve the uncertainty regarding population heterogeneity, we update the belief by using the data collected from all systems, allowing us to investigate the effect of so-called data pooling. First, we generate insights about the structure of the optimal policy. We then compare the cost per system under the optimal policy with the cost per system under two benchmark heuristics that follow the single-system optimal policy with and without data pooling, respectively. In our numerical experiments, we show that the cost reduction relative to the worst benchmark heuristic can be up to 5.6% for data pooling with two systems, and this increases up to 14% for 20 systems. Additionally, the effect of various input parameters on the costs is analyzed.

Suggested Citation

  • Dursun, İpek & Akçay, Alp & van Houtum, Geert-Jan, 2022. "Data pooling for multiple single-component systems under population heterogeneity," International Journal of Production Economics, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:proeco:v:250:y:2022:i:c:s092552732200247x
    DOI: 10.1016/j.ijpe.2022.108665
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092552732200247X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2022.108665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dursun, İpek & Akçay, Alp & van Houtum, Geert-Jan, 2022. "Age-based maintenance under population heterogeneity: Optimal exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1007-1020.
    2. Lolli, Francesco & Coruzzolo, Antonio Maria & Peron, Mirco & Sgarbossa, Fabio, 2022. "Age-based preventive maintenance with multiple printing options," International Journal of Production Economics, Elsevier, vol. 243(C).
    3. Tortorella, Guilherme Luz & Fogliatto, Flavio S. & Cauchick-Miguel, Paulo A. & Kurnia, Sherah & Jurburg, Daniel, 2021. "Integration of Industry 4.0 technologies into Total Productive Maintenance practices," International Journal of Production Economics, Elsevier, vol. 240(C).
    4. van Staden, Heletjé E. & Deprez, Laurens & Boute, Robert N., 2022. "A dynamic “predict, then optimize” preventive maintenance approach using operational intervention data," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1079-1096.
    5. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    6. David T. Abdul‐Malak & Jeffrey P. Kharoufeh & Lisa M. Maillart, 2019. "Maintaining systems with heterogeneous spare parts," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(6), pages 485-501, September.
    7. D Lugtigheid & X Jiang & A K S Jardine, 2008. "A finite horizon model for repairable systems with repair restrictions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1321-1331, October.
    8. Walter, Gero & Flapper, Simme Douwe, 2017. "Condition-based maintenance for complex systems based on current component status and Bayesian updating of component reliability," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 227-239.
    9. Chiel van Oosterom & Hao Peng & Geert-Jan van Houtum, 2017. "Maintenance optimization for a Markovian deteriorating system with population heterogeneity," IISE Transactions, Taylor & Francis Journals, vol. 49(1), pages 96-109, January.
    10. Louit, D.M. & Pascual, R. & Jardine, A.K.S., 2009. "A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1618-1628.
    11. Enrique López Droguett & Ali Mosleh, 2008. "Bayesian Methodology for Model Uncertainty Using Model Performance Data," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1457-1476, October.
    12. Fouladirad, Mitra & Paroissin, Christian & Grall, Antoine, 2018. "Sensitivity of optimal replacement policies to lifetime parameter estimates," European Journal of Operational Research, Elsevier, vol. 266(3), pages 963-975.
    13. Nakagawa, T. & Mizutani, S., 2009. "A summary of maintenance policies for a finite interval," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 89-96.
    14. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    15. Savaş Dayanik & Ülkü Gürler, 2002. "An Adaptive Bayesian Replacement Policy with Minimal Repair," Operations Research, INFORMS, vol. 50(3), pages 552-558, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leoni, Leonardo & De Carlo, Filippo & Tucci, Mario, 2023. "Developing a framework for generating production-dependent failure rate through discrete-event simulation," International Journal of Production Economics, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dursun, İpek & Akçay, Alp & van Houtum, Geert-Jan, 2022. "Age-based maintenance under population heterogeneity: Optimal exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1007-1020.
    2. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    3. Vanderschueren, Toon & Boute, Robert & Verdonck, Tim & Baesens, Bart & Verbeke, Wouter, 2023. "Optimizing the preventive maintenance frequency with causal machine learning," International Journal of Production Economics, Elsevier, vol. 258(C).
    4. Cai, Yue & Teunter, Ruud H. & de Jonge, Bram, 2023. "A data-driven approach for condition-based maintenance optimization," European Journal of Operational Research, Elsevier, vol. 311(2), pages 730-738.
    5. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    7. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    8. Zhao, Xiujie & Liu, Bin & Xu, Jianyu & Wang, Xiao-Lin, 2023. "Imperfect maintenance policies for warranted products under stochastic performance degradation," European Journal of Operational Research, Elsevier, vol. 308(1), pages 150-165.
    9. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    10. Zhang, Jian-Xun & Du, Dang-Bo & Si, Xiao-Sheng & Hu, Chang-Hua & Zhang, Han-Wen, 2021. "Joint optimization of preventive maintenance and inventory management for standby systems with hybrid-deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    11. Zhu, Zhicheng & Xiang, Yisha & Zhao, Ming & Shi, Yue, 2023. "Data-driven remanufacturing planning with parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 102-116.
    12. Liu, Xingchen & Sun, Qiuzhuang & Ye, Zhi-Sheng & Yildirim, Murat, 2021. "Optimal multi-type inspection policy for systems with imperfect online monitoring," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    13. Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & Scarf, Philip A., 2021. "Inspection and replacement policy with a fixed periodic schedule," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    14. Alotaibi, Naif M. & Scarf, Philip & Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & de Oliveira e Silva, André Luiz & Rodrigues, Augusto J.S. & Alyami, Salem A., 2023. "Modified-opportunistic inspection and the case of remote, groundwater well-heads," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Zheng, Meimei & Lin, Jie & Xia, Tangbin & Liu, Yu & Pan, Ershun, 2023. "Joint condition-based maintenance and spare provisioning policy for a K-out-of-N system with failures during inspection intervals," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1220-1232.
    16. Zu‐Liang Lin & Yeu‐Shiang Huang, 2010. "Nonperiodic preventive maintenance for repairable systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(7), pages 615-625, October.
    17. Sánchez-Herguedas, Antonio & Mena-Nieto, Angel & Rodrigo-Muñoz, Francisco, 2021. "A new analytical method to optimise the preventive maintenance interval by using a semi-Markov process and z-transform with an application to marine diesel engines," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    18. Lu, Biao & Chen, Zhen & Zhao, Xufeng, 2021. "Data-driven dynamic predictive maintenance for a manufacturing system with quality deterioration and online sensors," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    19. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    20. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:250:y:2022:i:c:s092552732200247x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.