IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i3p825-835.html
   My bibliography  Save this article

A preventive maintenance policy and a method to approximate the failure process for multi-component systems

Author

Listed:
  • Wu, Shaomin
  • Asadi, Majid

Abstract

Numerous maintenance policies have been proposed in the reliability mathematics and engineering literature. Nevertheless, little has been reported on their practical applications in industries. This gap is largely due to restrictive assumptions of the maintenance policies. Two of the main assumptions are that maintenance is conducted on typical components and that the reliability of an item under maintenance is known (where the item can be a component or a system composed of multiple components). These assumptions do not often hold in the real world: maintenance is often performed on a collection of components such as an integrated circuit plate and the reliability of each individual component may not be known. To reduce these gaps, this paper develops a new maintenance policy for a collection of components and an approximate method to estimate the reliability of this collection based on the failure data collected from the field. The maintenance policy considers that a system is composed of three subsystems with different levels of maintenance effectiveness (i.e, minimal, imperfect, and perfect). The approximate estimate of the reliability of each subsystem is derived based on the failure data that are time between failures of the system but not those of the components that cause the system to fail. An algorithm for simulating the superposition of generalised renewal processes is then proposed. Numerical examples are used to illustrate the proposed approximation method.

Suggested Citation

  • Wu, Shaomin & Asadi, Majid, 2024. "A preventive maintenance policy and a method to approximate the failure process for multi-component systems," European Journal of Operational Research, Elsevier, vol. 318(3), pages 825-835.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:3:p:825-835
    DOI: 10.1016/j.ejor.2024.05.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724004132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.05.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Yue & Teunter, Ruud H. & de Jonge, Bram, 2023. "A data-driven approach for condition-based maintenance optimization," European Journal of Operational Research, Elsevier, vol. 311(2), pages 730-738.
    2. Wu, Shaomin & Scarf, Philip, 2017. "Two new stochastic models of the failure process of a series system," European Journal of Operational Research, Elsevier, vol. 257(3), pages 763-772.
    3. Wu, Shaomin, 2019. "A failure process model with the exponential smoothing of intensity functions," European Journal of Operational Research, Elsevier, vol. 275(2), pages 502-513.
    4. Ward Whitt, 1982. "Approximating a Point Process by a Renewal Process, I: Two Basic Methods," Operations Research, INFORMS, vol. 30(1), pages 125-147, February.
    5. Robin P. Nicolai & Rommert Dekker, 2008. "Optimal Maintenance of Multi-component Systems: A Review," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 11, pages 263-286, Springer.
    6. van Staden, Heletjé E. & Deprez, Laurens & Boute, Robert N., 2022. "A dynamic “predict, then optimize” preventive maintenance approach using operational intervention data," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1079-1096.
    7. Susan L. Albin, 1984. "Approximating a Point Process by a Renewal Process, II: Superposition Arrival Processes to Queues," Operations Research, INFORMS, vol. 32(5), pages 1133-1162, October.
    8. Wu, Di & Xiao, Hui & Peng, Rui, 2018. "Object defense with preventive strike and false targets," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 76-80.
    9. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Integrated optimization of test case selection and sequencing for reliability testing of the mainboard of Internet backbone routers," European Journal of Operational Research, Elsevier, vol. 299(1), pages 183-194.
    10. Brenière, Léa & Doyen, Laurent & Bérenguer, Christophe, 2023. "Optimization of preventive replacements dates and covariate inspections for repairable systems in varying environments," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1126-1141.
    11. Hongyan Dui & Xingju Yang & Yining Fang, 2023. "Evaluation methodology for preventive maintenance in multi-state manufacturing systems considering different costs," International Journal of Production Research, Taylor & Francis Journals, vol. 61(23), pages 8309-8324, December.
    12. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    13. Peng, Rui & He, Xiaofeng & Zhong, Chao & Kou, Gang & Xiao, Hui, 2022. "Preventive maintenance for heterogeneous parallel systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    14. Joo, Seong-Jong, 2009. "Scheduling preventive maintenance for modular designed components: A dynamic approach," European Journal of Operational Research, Elsevier, vol. 192(2), pages 512-520, January.
    15. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    16. Shuangchi He, 2020. "Diffusion Approximation for Efficiency-Driven Queues When Customers Are Patient," Operations Research, INFORMS, vol. 68(4), pages 1265-1284, July.
    17. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torrado, Nuria, 2022. "Optimal component-type allocation and replacement time policies for parallel systems having multi-types dependent components," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    2. Zhu, Mixin & Zhou, Xiaojun, 2024. "Maintenance modeling of serial-parallel multi-station manufacturing system with failure-induced damage and assembly parts," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    3. Wu, Shaomin, 2021. "Two methods to approximate the superposition of imperfect failure processes," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Zheng, Rui & Zhao, Xufeng & Hu, Chaoming & Ren, Xiangyun, 2023. "A repair-replacement policy for a system subject to missions of random types and random durations," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Wu, Shaomin & Wu, Di & Peng, Rui, 2023. "Considering greenhouse gas emissions in maintenance optimisation," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1135-1145.
    6. Li, Meiyan & Wu, Bei, 2024. "Optimal condition-based opportunistic maintenance policy for two-component systems considering common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    7. Girish, Muckai K. & Hu, Jian-Qiang, 2000. "Higher order approximations for the single server queue with splitting, merging and feedback," European Journal of Operational Research, Elsevier, vol. 124(3), pages 447-467, August.
    8. Kivanç, İpek & Fecarotti, Claudia & Raassens, Néomie & van Houtum, Geert-Jan, 2024. "A scalable multi-objective maintenance optimization model for systems with multiple heterogeneous components and a finite lifespan," European Journal of Operational Research, Elsevier, vol. 315(2), pages 567-579.
    9. Dilaver, Halit Metehan & Akçay, Alp & van Houtum, Geert-Jan, 2023. "Integrated planning of asset-use and dry-docking for a fleet of maritime assets," International Journal of Production Economics, Elsevier, vol. 256(C).
    10. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    11. Jiang, R., 2020. "A novel two-fold sectional approximation of renewal function and its applications," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Zhu, Mixin & Zhou, Xiaojun, 2022. "Hypergraph-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    13. Syamsundar, A. & Naikan, V.N.A. & Wu, Shaomin, 2020. "Alternative scales in reliability models for a repairable system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Barlow, E. & Bedford, T. & Revie, M. & Tan, J. & Walls, L., 2021. "A performance-centred approach to optimising maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 292(2), pages 579-595.
    15. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Analysis of network cascading failure based on the cluster aggregation in cyber-physical systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    16. Zheng, Meimei & Lin, Jie & Xia, Tangbin & Liu, Yu & Pan, Ershun, 2023. "Joint condition-based maintenance and spare provisioning policy for a K-out-of-N system with failures during inspection intervals," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1220-1232.
    17. uit het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and condition-based production optimization," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Dursun, İpek & Akçay, Alp & van Houtum, Geert-Jan, 2022. "Data pooling for multiple single-component systems under population heterogeneity," International Journal of Production Economics, Elsevier, vol. 250(C).
    19. Renyan Jiang, 2022. "A novel parameter estimation method for the Weibull distribution on heavily censored data," Journal of Risk and Reliability, , vol. 236(2), pages 307-316, April.
    20. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:3:p:825-835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.