IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023005082.html
   My bibliography  Save this article

Optimal maintenance strategy for large-scale production systems under maintenance time uncertainty

Author

Listed:
  • Jin, Haibo
  • Song, Xianhe
  • Xia, Hao

Abstract

Many complex industrial systems have numerous operational states and oftentimes suffer from a variety of uncertainties. Determining how to address the uncertainty and efficiently reduce the number of system states has practical significance. This work is dedicated to developing a maintenance strategy based on the approximate dynamic programming (ADP) method for large-scale maintainable systems suffering from maintenance time uncertainties. In this work, an optimal schedule algorithm is proposed to address the optimal assignment problem of how to assign a certain number of components to several technicians, with the goal of minimizing the total maintenance time subject to maintenance time uncertainty. Thereafter, an optimal maintenance strategy for a system with a large number of states over a finite time horizon is developed based on the Markov decision process combined with ADP. To solve such a maintenance strategy, a solution algorithm is proposed where the system state reached in the next decision period is estimated by a simulation technique, and the post-decision state method is utilized to achieve the reduction of the number of system ergodic states. The results of numerical examples and a practical application demonstrate the effectiveness, high performance and applicability of the developed strategy.

Suggested Citation

  • Jin, Haibo & Song, Xianhe & Xia, Hao, 2023. "Optimal maintenance strategy for large-scale production systems under maintenance time uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023005082
    DOI: 10.1016/j.ress.2023.109594
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Jamali & E. Khaleghi & I. Gholaminezhad & N. Nariman-Zadeh & B. Gholaminia & A. Jamal-Omidi, 2017. "Multi-objective genetic programming approach for robust modeling of complex manufacturing processes having probabilistic uncertainty in experimental data," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 149-163, January.
    2. Abdelhamid Boudjelida, 2019. "On the robustness of joint production and maintenance scheduling in presence of uncertainties," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1515-1530, April.
    3. He, Zhen & Zhu, Peng-Fei & Park, Sung-Hyun, 2012. "A robust desirability function method for multi-response surface optimization considering model uncertainty," European Journal of Operational Research, Elsevier, vol. 221(1), pages 241-247.
    4. Deng, Qichen & Santos, Bruno F., 2022. "Lookahead approximate dynamic programming for stochastic aircraft maintenance check scheduling optimization," European Journal of Operational Research, Elsevier, vol. 299(3), pages 814-833.
    5. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cervellera, Cristiano, 2023. "Optimized ensemble value function approximation for dynamic programming," European Journal of Operational Research, Elsevier, vol. 309(2), pages 719-730.
    2. Sciau, Jean-Baptiste & Goyon, Agathe & Sarazin, Alexandre & Bascans, Jérémy & Prud’homme, Charles & Lorca, Xavier, 2024. "Using constraint programming to address the operational aircraft line maintenance scheduling problem," Journal of Air Transport Management, Elsevier, vol. 115(C).
    3. Linhan Ouyang & Yizhong Ma & Jianxiong Chen & Zhigang Zeng & Yiliu Tu, 2016. "Robust optimisation of Nd: YLF laser beam micro-drilling process using Bayesian probabilistic approach," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6644-6659, November.
    4. Carrillo-Galvez, Adrian & Flores-Bazán, Fabián & Parra, Enrique López, 2022. "Effect of models uncertainties on the emission constrained economic dispatch. A prediction interval-based approach," Applied Energy, Elsevier, vol. 317(C).
    5. Giovanni Boschetti & Matteo Bottin & Maurizio Faccio & Riccardo Minto, 2021. "Multi-robot multi-operator collaborative assembly systems: a performance evaluation model," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1455-1470, June.
    6. Ouyang, Linhan & Ma, Yizhong & Wang, Jianjun & Tu, Yiliu, 2017. "A new loss function for multi-response optimization with model parameter uncertainty and implementation errors," European Journal of Operational Research, Elsevier, vol. 258(2), pages 552-563.
    7. Seyed Ahmad Razavi Al-e-hashem & Ali Papi & Mir Saman Pishvaee & Mohammadreza Rasouli, 2022. "Robust maintenance planning and scheduling for multi-factory production networks considering disruption cost: a bi-objective optimization model and a metaheuristic solution method," Operational Research, Springer, vol. 22(5), pages 4999-5034, November.
    8. Wang, Jianjun & Ma, Yizhong & Ouyang, Linhan & Tu, Yiliu, 2016. "A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability," European Journal of Operational Research, Elsevier, vol. 249(1), pages 231-237.
    9. Gomes, J.H.F. & Paiva, A.P. & Costa, S.C. & Balestrassi, P.P. & Paiva, E.J., 2013. "Weighted Multivariate Mean Square Error for processes optimization: A case study on flux-cored arc welding for stainless steel claddings," European Journal of Operational Research, Elsevier, vol. 226(3), pages 522-535.
    10. Changjiu Li & Yong Zhang & Xichao Su & Xinwei Wang, 2022. "An Improved Optimization Algorithm for Aeronautical Maintenance and Repair Task Scheduling Problem," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    11. Geurtsen, M. & Didden, Jeroen B.H.C. & Adan, J. & Atan, Z. & Adan, I., 2023. "Production, maintenance and resource scheduling: A review," European Journal of Operational Research, Elsevier, vol. 305(2), pages 501-529.
    12. Majid Baghery & Samuel Yousefi & Mustafa Jahangoshai Rezaee, 2018. "Risk measurement and prioritization of auto parts manufacturing processes based on process failure analysis, interval data envelopment analysis and grey relational analysis," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1803-1825, December.
    13. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy & Didier Maillard, 2019. "Computation of the corrected Cornish–Fisher expansion using the response surface methodology: application to VaR and CVaR," Annals of Operations Research, Springer, vol. 281(1), pages 423-453, October.
    14. Jafar-Zanjani, Hamed & Zandieh, Mostafa & Sharifi, Mani, 2022. "Robust and resilient joint periodic maintenance planning and scheduling in a multi-factory network under uncertainty: A case study," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    15. Christopher Hagedorn & Johannes Huegle & Rainer Schlosser, 2022. "Understanding unforeseen production downtimes in manufacturing processes using log data-driven causal reasoning," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2027-2043, October.
    16. Jartnillaphand, Ponpot & Mardaneh, Elham & Bui, Hoa T., 2025. "Bilinear branch and check for unspecified parallel machine scheduling with shift consideration," European Journal of Operational Research, Elsevier, vol. 320(1), pages 35-56.
    17. Shi, Liangxing & Lin, Dennis K.J. & Peterson, John J., 2016. "A confidence region for the ridge path in multiple response surface optimization," European Journal of Operational Research, Elsevier, vol. 252(3), pages 829-836.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023005082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.