IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i8p2283-2314.html
   My bibliography  Save this article

An energy-efficient two-stage hybrid flow shop scheduling problem in a glass production

Author

Listed:
  • Shijin Wang
  • Xiaodong Wang
  • Feng Chu
  • Jianbo Yu

Abstract

Energy-efficient scheduling is highly necessary for energy-intensive industries, such as glass, mould or chemical production. Inspired by a real-world glass-ceramics production process, this paper investigates a bi-criteria energy-efficient two-stage hybrid flow shop scheduling problem, in which parallel machines with eligibility are at stage 1 and a batch machine is at stage 2. The performance measures considered are makespan and total energy consumption. Time-of-use (TOU) electricity prices and different states of machines (working, idle and turnoff) are integrated. To tackle this problem, a mixed integer programming (MIP) is formulated, based on which an augmented ε-constraint (AUGMECON) method is adopted to obtain the exact Pareto front. A problem-tailored constructive heuristic method with local search strategy, a bi-objective tabu search algorithm and a bi-objective ant colony optimisation algorithm are developed to deal with medium- and large-scale problems. Extensive computational experiments are conducted, and a real-world case is solved. The results show effectiveness of the proposed methods, in particular the bi-objective tabu search.

Suggested Citation

  • Shijin Wang & Xiaodong Wang & Feng Chu & Jianbo Yu, 2020. "An energy-efficient two-stage hybrid flow shop scheduling problem in a glass production," International Journal of Production Research, Taylor & Francis Journals, vol. 58(8), pages 2283-2314, April.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:8:p:2283-2314
    DOI: 10.1080/00207543.2019.1624857
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1624857
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1624857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Bożek, 2020. "Energy Cost-Efficient Task Positioning in Manufacturing Systems," Energies, MDPI, vol. 13(19), pages 1-21, September.
    2. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    3. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    4. Arshad Ali & Yuvraj Gajpal & Tarek Y. Elmekkawy, 2021. "Distributed permutation flowshop scheduling problem with total completion time objective," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 425-447, June.
    5. An, Xiangxin & Si, Guojin & Xia, Tangbin & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2023. "An energy-efficient collaborative strategy of maintenance planning and production scheduling for serial-parallel systems under time-of-use tariffs," Applied Energy, Elsevier, vol. 336(C).
    6. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.
    7. Hsin-Chieh Wu & Horng-Ren Tsai & Tin-Chih Toly Chen & Keng-Wei Hsu, 2021. "Energy-Efficient Production Planning Using a Two-Stage Fuzzy Approach," Mathematics, MDPI, vol. 9(10), pages 1-17, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:8:p:2283-2314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.