An accelerated directional derivative method for smooth stochastic convex optimization
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2020.08.027
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Yurii NESTEROV & Sebastian U. STICH, 2017. "Efficiency of the accelerated coordinate descent method on structured optimization problems," LIDAM Reprints CORE 2845, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- DEVOLDER, Olivier, 2011. "Stochastic first order methods in smooth convex optimization," LIDAM Discussion Papers CORE 2011070, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
- Pavel Dvurechensky & Alexander Gasnikov, 2016. "Stochastic Intermediate Gradient Method for Convex Problems with Stochastic Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 121-145, October.
- NESTEROV, Yurii, 2015. "Universal gradient methods for convex optimization problems," LIDAM Reprints CORE 2701, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Yurii NESTEROV & Vladimir SPOKOINY, 2017. "Random gradient-free minimization of convex functions," LIDAM Reprints CORE 2851, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
- Anastasiya Ivanova & Pavel Dvurechensky & Evgeniya Vorontsova & Dmitry Pasechnyuk & Alexander Gasnikov & Darina Dvinskikh & Alexander Tyurin, 2022. "Oracle Complexity Separation in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 462-490, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
- Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
- Ghadimi, Saeed & Powell, Warren B., 2024. "Stochastic search for a parametric cost function approximation: Energy storage with rolling forecasts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 641-652.
- David Kozak & Stephen Becker & Alireza Doostan & Luis Tenorio, 2021. "A stochastic subspace approach to gradient-free optimization in high dimensions," Computational Optimization and Applications, Springer, vol. 79(2), pages 339-368, June.
- Olivier Fercoq & Zheng Qu, 2020. "Restarting the accelerated coordinate descent method with a rough strong convexity estimate," Computational Optimization and Applications, Springer, vol. 75(1), pages 63-91, January.
- Anastasiya Ivanova & Pavel Dvurechensky & Evgeniya Vorontsova & Dmitry Pasechnyuk & Alexander Gasnikov & Darina Dvinskikh & Alexander Tyurin, 2022. "Oracle Complexity Separation in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 462-490, June.
- Vladimir Krutikov & Svetlana Gutova & Elena Tovbis & Lev Kazakovtsev & Eugene Semenkin, 2022. "Relaxation Subgradient Algorithms with Machine Learning Procedures," Mathematics, MDPI, vol. 10(21), pages 1-33, October.
- Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
- Preil, Deniz & Krapp, Michael, 2022. "Bandit-based inventory optimisation: Reinforcement learning in multi-echelon supply chains," International Journal of Production Economics, Elsevier, vol. 252(C).
- Elena Tovbis & Vladimir Krutikov & Predrag Stanimirović & Vladimir Meshechkin & Aleksey Popov & Lev Kazakovtsev, 2023. "A Family of Multi-Step Subgradient Minimization Methods," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
- V. Kungurtsev & F. Rinaldi, 2021. "A zeroth order method for stochastic weakly convex optimization," Computational Optimization and Applications, Springer, vol. 80(3), pages 731-753, December.
- Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
- TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016.
"Exact worst-case performance of first-order methods for composite convex optimization,"
LIDAM Discussion Papers CORE
2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Adrien B. TAYLOR & Julien M. HENDRICKX & François GLINEUR, 2017. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Reprints CORE 2875, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Santos, A.M.P. & Fagerholt, Kjetil & Laporte, Gilbert & Guedes Soares, C., 2022. "A stochastic optimization approach for the supply vessel planning problem under uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 209-228.
- Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
- Finnah, Benedikt & Gönsch, Jochen & Ziel, Florian, 2022. "Integrated day-ahead and intraday self-schedule bidding for energy storage systems using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 301(2), pages 726-746.
- Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
- Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
- Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
- David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
More about this item
Keywords
Stochastic programming; Convex programming; Acceleration; Derivative-free optimization; Zero-order methods;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:290:y:2021:i:2:p:601-621. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.