IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v92y2020ics0305048319308369.html
   My bibliography  Save this article

Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning

Author

Listed:
  • Bastian, Nathaniel D.
  • Lunday, Brian J.
  • Fisher, Christopher B.
  • Hall, Andrew O.

Abstract

This work examines the problem of optimally resourcing personnel for a new set of U.S. Army cyber-specialty career fields using a combination of personnel accessions and inter-career-field transfers that are limited to occur over a subset of periods early within a 30-year career cycle. This workforce planning problem is bounded by constraints respectively pertaining to organizational needs for personnel, as well as personnel promotion policies. Complicating the problem are stochastic retention rates for every combination of year and promotion level within each career field over the 30-year period. Upon formalizing this Cyber Workforce Planning Problem (CWPP) within the framework of multiple performance goals, this study formulates, tests, and compares three frameworks to seek optimal workforce planning decisions under uncertainty: two stochastic programming (SP) variants and a robust optimization (RO) representation. Upon sampling the stochastic parametric distributions to generate a set of collectively representative, deterministic scenarios, the SP variants respectively leverage a scenario-based Monte Carlo approach and sample average approximation, whereas the RO model examines robust solutions over a range of decision-maker risk attitudes. A sensitivity analysis applied to the first of the SP variants indicates the solutions are relatively insensitive to different prioritizations of goals, and identifies policy insights to help recruit and retain personnel. Comparative testing of the three methodologies yields workforce planning recommendations that are relatively consistent across solution methodologies and identify concerns to inform changes to personnel policies.

Suggested Citation

  • Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
  • Handle: RePEc:eee:jomega:v:92:y:2020:i:c:s0305048319308369
    DOI: 10.1016/j.omega.2019.102171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048319308369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2019.102171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John R. Birge, 1997. "State-of-the-Art-Survey---Stochastic Programming: Computation and Applications," INFORMS Journal on Computing, INFORMS, vol. 9(2), pages 111-133, May.
    2. Hanks, Robert W. & Weir, Jeffery D. & Lunday, Brian J., 2017. "Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 262(2), pages 636-646.
    3. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    4. Nathaniel D. Bastian & Pat McMurry & Lawrence V. Fulton & Paul M. Griffin & Shisheng Cui & Thor Hanson & Sharan Srinivas, 2015. "The AMEDD Uses Goal Programming to Optimize Workforce Planning Decisions," Interfaces, INFORMS, vol. 45(4), pages 305-324, August.
    5. Dan Shrimpton & Alexandra M. Newman, 2005. "The US Army Uses a Network Optimization Model to Designate Career Fields for Officers," Interfaces, INFORMS, vol. 35(3), pages 230-237, June.
    6. Dimitris Bertsimas & David B. Brown, 2009. "Constructing Uncertainty Sets for Robust Linear Optimization," Operations Research, INFORMS, vol. 57(6), pages 1483-1495, December.
    7. Franklin M. Fisher & Anton S. Morton, 1967. "The Costs and Effectiveness of Reenlistment Incentives in the Navy," Operations Research, INFORMS, vol. 15(3), pages 373-387, June.
    8. John McCall & Neil Wallace, 1969. "A Supply Function of First-Term Re-Enlistees to the Air Force," Journal of Human Resources, University of Wisconsin Press, vol. 4(3), pages 293-310.
    9. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    10. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    11. Saul I. Gass & Roger W. Collins & Craig W. Meinhardt & Douglas M. Lemon & Marcia D. Gillette, 1988. "OR Practice—The Army Manpower Long-Range Planning System," Operations Research, INFORMS, vol. 36(1), pages 5-17, February.
    12. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    13. Nathaniel D. Bastian & Tahir Ekin & Hyojung Kang & Paul M. Griffin & Lawrence V. Fulton & Benjamin C. Grannan, 2017. "Stochastic multi-objective auto-optimization for resource allocation decision-making in fixed-input health systems," Health Care Management Science, Springer, vol. 20(2), pages 246-264, June.
    14. John W. Abrams, 1957. "Letter to the Editor---Military Applications of Operational Research," Operations Research, INFORMS, vol. 5(3), pages 434-440, June.
    15. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Turan, Hasan Hüseyin & Jalalvand, Fatemeh & Elsawah, Sondoss & Ryan, Michael J., 2022. "A joint problem of strategic workforce planning and fleet renewal: With an application in defense," European Journal of Operational Research, Elsevier, vol. 296(2), pages 615-634.
    2. Jenkins, Phillip R. & Caballero, William N. & Hill, Raymond R., 2022. "Predicting success in United States Air Force pilot training using machine learning techniques," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    3. Black, Ben & Ainslie, Russell & Dokka, Trivikram & Kirkbride, Christopher, 2023. "Distributionally robust resource planning under binomial demand intakes," European Journal of Operational Research, Elsevier, vol. 306(1), pages 227-242.
    4. Leo MacDonald & Jomon Aliyas Paul, 2024. "A risk analytics model for strategic workforce planning: readiness of enlisted military personnel," Annals of Operations Research, Springer, vol. 338(1), pages 513-533, July.
    5. Wu, Zhiying & Xu, Guoning & Chen, Qingxin & Mao, Ning, 2023. "Two stochastic optimization methods for shift design with uncertain demand," Omega, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hatami-Marbini, Adel & Arabmaldar, Aliasghar, 2021. "Robustness of Farrell cost efficiency measurement under data perturbations: Evidence from a US manufacturing application," European Journal of Operational Research, Elsevier, vol. 295(2), pages 604-620.
    2. João Flávio de Freitas Almeida & Samuel Vieira Conceição & Luiz Ricardo Pinto & Ricardo Saraiva de Camargo & Gilberto de Miranda Júnior, 2018. "Flexibility evaluation of multiechelon supply chains," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-27, March.
    3. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    4. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    5. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    6. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
    7. Claire Nicolas & Stéphane Tchung-Ming & Emmanuel Hache, 2016. "Energy transition in transportation under cost uncertainty, an assessment based on robust optimization," Working Papers hal-02475943, HAL.
    8. Ghazaleh Ahmadi & Reza Tavakkoli-Moghaddam & Armand Baboli & Mehdi Najafi, 2022. "A decision support model for robust allocation and routing of search and rescue resources after earthquake: a case study," Operational Research, Springer, vol. 22(2), pages 1039-1081, April.
    9. Emmanuel Kwasi Mensah, 2020. "Robust data envelopment analysis via ellipsoidal uncertainty sets with application to the Italian banking industry," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 491-518, December.
    10. Hafezalkotob, Ashkan & Makui, Ahmad, 2015. "Cooperative maximum-flow problem under uncertainty in logistic networks," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 593-604.
    11. Ouhimmou, Mustapha & Nourelfath, Mustapha & Bouchard, Mathieu & Bricha, Naji, 2019. "Design of robust distribution network under demand uncertainty: A case study in the pulp and paper," International Journal of Production Economics, Elsevier, vol. 218(C), pages 96-105.
    12. Mehdi Karimi & Somayeh Moazeni & Levent Tunçel, 2018. "A Utility Theory Based Interactive Approach to Robustness in Linear Optimization," Journal of Global Optimization, Springer, vol. 70(4), pages 811-842, April.
    13. Vahid Nazari-Ghanbarloo & Ali Ghodratnama, 2021. "Optimizing a robust tri-objective multi-period reliable supply chain network considering queuing system and operational and disruption risks," Operational Research, Springer, vol. 21(3), pages 1963-2020, September.
    14. Hanks, Robert W. & Weir, Jeffery D. & Lunday, Brian J., 2017. "Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 262(2), pages 636-646.
    15. Donya Rahmani & Arash Zandi & Sara Behdad & Arezou Entezaminia, 2021. "A light robust model for aggregate production planning with consideration of environmental impacts of machines," Operational Research, Springer, vol. 21(1), pages 273-297, March.
    16. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    17. Shiva Zokaee & Armin Jabbarzadeh & Behnam Fahimnia & Seyed Jafar Sadjadi, 2017. "Robust supply chain network design: an optimization model with real world application," Annals of Operations Research, Springer, vol. 257(1), pages 15-44, October.
    18. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    19. Almaraj, Ismail I. & Trafalis, Theodore B., 2019. "An integrated multi-echelon robust closed- loop supply chain under imperfect quality production," International Journal of Production Economics, Elsevier, vol. 218(C), pages 212-227.
    20. Güray Kara & Ayşe Özmen & Gerhard-Wilhelm Weber, 2019. "Stability advances in robust portfolio optimization under parallelepiped uncertainty," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 241-261, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:92:y:2020:i:c:s0305048319308369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.