IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v171y2016i1d10.1007_s10957-016-0999-6.html
   My bibliography  Save this article

Stochastic Intermediate Gradient Method for Convex Problems with Stochastic Inexact Oracle

Author

Listed:
  • Pavel Dvurechensky

    (Weierstrass Institute for Applied Analysis and Stochastics
    Institute for Information Transmission Problems RAS)

  • Alexander Gasnikov

    (Institute for Information Transmission Problems RAS
    Moscow Institute of Physics and Technology)

Abstract

In this paper, we introduce new methods for convex optimization problems with stochastic inexact oracle. Our first method is an extension of the Intermediate Gradient Method proposed by Devolder, Glineur and Nesterov for problems with deterministic inexact oracle. Our method can be applied to problems with composite objective function, both deterministic and stochastic inexactness of the oracle, and allows using a non-Euclidean setup. We estimate the rate of convergence in terms of the expectation of the non-optimality gap and provide a way to control the probability of large deviations from this rate. Also we introduce two modifications of this method for strongly convex problems. For the first modification, we estimate the rate of convergence for the non-optimality gap expectation and, for the second, we provide a bound for the probability of large deviations from the rate of convergence in terms of the expectation of the non-optimality gap. All the rates lead to the complexity estimates for the proposed methods, which up to a multiplicative constant coincide with the lower complexity bound for the considered class of convex composite optimization problems with stochastic inexact oracle.

Suggested Citation

  • Pavel Dvurechensky & Alexander Gasnikov, 2016. "Stochastic Intermediate Gradient Method for Convex Problems with Stochastic Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 121-145, October.
  • Handle: RePEc:spr:joptap:v:171:y:2016:i:1:d:10.1007_s10957-016-0999-6
    DOI: 10.1007/s10957-016-0999-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-0999-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-0999-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2013. "Intermediate gradient methods for smooth convex problems with inexact oracle," LIDAM Discussion Papers CORE 2013017, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. NESTEROV, Yu., 2012. "Subgradient methods for huge-scale optimization problems," LIDAM Discussion Papers CORE 2012002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2011. "First-order methods of smooth convex optimization with inexact oracle," LIDAM Discussion Papers CORE 2011002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Fercoq & Zheng Qu, 2020. "Restarting the accelerated coordinate descent method with a rough strong convexity estimate," Computational Optimization and Applications, Springer, vol. 75(1), pages 63-91, January.
    2. Dvurechensky, Pavel & Gorbunov, Eduard & Gasnikov, Alexander, 2021. "An accelerated directional derivative method for smooth stochastic convex optimization," European Journal of Operational Research, Elsevier, vol. 290(2), pages 601-621.
    3. Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
    4. Vladimir Krutikov & Svetlana Gutova & Elena Tovbis & Lev Kazakovtsev & Eugene Semenkin, 2022. "Relaxation Subgradient Algorithms with Machine Learning Procedures," Mathematics, MDPI, vol. 10(21), pages 1-33, October.
    5. Tianxiao Sun & Ion Necoara & Quoc Tran-Dinh, 2020. "Composite convex optimization with global and local inexact oracles," Computational Optimization and Applications, Springer, vol. 76(1), pages 69-124, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    2. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Le Thi Khanh Hien & Cuong V. Nguyen & Huan Xu & Canyi Lu & Jiashi Feng, 2019. "Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 541-566, May.
    4. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    5. Masoud Ahookhosh & Arnold Neumaier, 2018. "Solving structured nonsmooth convex optimization with complexity $$\mathcal {O}(\varepsilon ^{-1/2})$$ O ( ε - 1 / 2 )," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 110-145, April.
    6. Rachael Tappenden & Peter Richtárik & Jacek Gondzio, 2016. "Inexact Coordinate Descent: Complexity and Preconditioning," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 144-176, July.
    7. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    8. Kimon Fountoulakis & Rachael Tappenden, 2018. "A flexible coordinate descent method," Computational Optimization and Applications, Springer, vol. 70(2), pages 351-394, June.
    9. Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018. "Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 455-476, August.
    10. Ren Jiang & Zhifeng Ji & Wuling Mo & Suhua Wang & Mingjun Zhang & Wei Yin & Zhen Wang & Yaping Lin & Xueke Wang & Umar Ashraf, 2022. "A Novel Method of Deep Learning for Shear Velocity Prediction in a Tight Sandstone Reservoir," Energies, MDPI, vol. 15(19), pages 1-20, September.
    11. Xuexue Zhang & Sanyang Liu & Nannan Zhao, 2023. "An Extended Gradient Method for Smooth and Strongly Convex Functions," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
    12. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    13. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    14. Liu, Yulan & Bi, Shujun, 2019. "Error bounds for non-polyhedral convex optimization and applications to linear convergence of FDM and PGM," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 418-435.
    15. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    16. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2013. "First-order methods with inexact oracle: the strongly convex case," LIDAM Discussion Papers CORE 2013016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    18. Ching-pei Lee & Stephen J. Wright, 2019. "Inexact Successive quadratic approximation for regularized optimization," Computational Optimization and Applications, Springer, vol. 72(3), pages 641-674, April.
    19. DEVOLDER, Olivier, 2011. "Stochastic first order methods in smooth convex optimization," LIDAM Discussion Papers CORE 2011070, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Dao, Nguyen Thang & Dávila, Julio, 2013. "Can geography lock a society in stagnation?," Economics Letters, Elsevier, vol. 120(3), pages 442-446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:171:y:2016:i:1:d:10.1007_s10957-016-0999-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.