IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v79y2021i2d10.1007_s10589-021-00271-w.html
   My bibliography  Save this article

A stochastic subspace approach to gradient-free optimization in high dimensions

Author

Listed:
  • David Kozak

    (Solea Energy
    Colorado School of Mines)

  • Stephen Becker

    (University of Colorado)

  • Alireza Doostan

    (University of Colorado)

  • Luis Tenorio

    (Solea Energy)

Abstract

We present a stochastic descent algorithm for unconstrained optimization that is particularly efficient when the objective function is slow to evaluate and gradients are not easily obtained, as in some PDE-constrained optimization and machine learning problems. The algorithm maps the gradient onto a low-dimensional random subspace of dimension $$\ell$$ ℓ at each iteration, similar to coordinate descent but without restricting directional derivatives to be along the axes. Without requiring a full gradient, this mapping can be performed by computing $$\ell$$ ℓ directional derivatives (e.g., via forward-mode automatic differentiation). We give proofs for convergence in expectation under various convexity assumptions as well as probabilistic convergence results under strong-convexity. Our method provides a novel extension to the well-known Gaussian smoothing technique to descent in subspaces of dimension greater than one, opening the doors to new analysis of Gaussian smoothing when more than one directional derivative is used at each iteration. We also provide a finite-dimensional variant of a special case of the Johnson–Lindenstrauss lemma. Experimentally, we show that our method compares favorably to coordinate descent, Gaussian smoothing, gradient descent and BFGS (when gradients are calculated via forward-mode automatic differentiation) on problems from the machine learning and shape optimization literature.

Suggested Citation

  • David Kozak & Stephen Becker & Alireza Doostan & Luis Tenorio, 2021. "A stochastic subspace approach to gradient-free optimization in high dimensions," Computational Optimization and Applications, Springer, vol. 79(2), pages 339-368, June.
  • Handle: RePEc:spr:coopap:v:79:y:2021:i:2:d:10.1007_s10589-021-00271-w
    DOI: 10.1007/s10589-021-00271-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00271-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00271-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii, 2011. "Random gradient-free minimization of convex functions," LIDAM Discussion Papers CORE 2011001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Peter Frankl & Hiroshi Maehara, 1990. "Some geometric applications of the beta distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(3), pages 463-474, September.
    3. NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Eldad Haber & Zhuojun Magnant & Christian Lucero & Luis Tenorio, 2012. "Numerical methods for A-optimal designs with a sparsity constraint for ill-posed inverse problems," Computational Optimization and Applications, Springer, vol. 52(1), pages 293-314, May.
    5. Yurii NESTEROV & Vladimir SPOKOINY, 2017. "Random gradient-free minimization of convex functions," LIDAM Reprints CORE 2851, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dvurechensky, Pavel & Gorbunov, Eduard & Gasnikov, Alexander, 2021. "An accelerated directional derivative method for smooth stochastic convex optimization," European Journal of Operational Research, Elsevier, vol. 290(2), pages 601-621.
    2. Ghadimi, Saeed & Powell, Warren B., 2024. "Stochastic search for a parametric cost function approximation: Energy storage with rolling forecasts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 641-652.
    3. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    4. V. Kungurtsev & F. Rinaldi, 2021. "A zeroth order method for stochastic weakly convex optimization," Computational Optimization and Applications, Springer, vol. 80(3), pages 731-753, December.
    5. Nikita Kornilov & Alexander Gasnikov & Pavel Dvurechensky & Darina Dvinskikh, 2023. "Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact," Computational Management Science, Springer, vol. 20(1), pages 1-43, December.
    6. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Bar, Haim & Wells, Martin T., 2023. "On graphical models and convex geometry," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    8. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    9. Duy Khuong Nguyen & Tu Bao Ho, 2017. "Accelerated parallel and distributed algorithm using limited internal memory for nonnegative matrix factorization," Journal of Global Optimization, Springer, vol. 68(2), pages 307-328, June.
    10. Abbaszadehpeivasti, Hadi & de Klerk, Etienne & Zamani, Moslem, 2023. "Convergence rate analysis of randomized and cyclic coordinate descent for convex optimization through semidefinite programming," Other publications TiSEM 88512ac0-c26a-4a99-b840-3, Tilburg University, School of Economics and Management.
    11. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    12. Ravi Kashyap, 2016. "The Perfect Marriage and Much More: Combining Dimension Reduction, Distance Measures and Covariance," Papers 1603.09060, arXiv.org, revised Jul 2019.
    13. Sjur Didrik Flåm, 2019. "Blocks of coordinates, stochastic programming, and markets," Computational Management Science, Springer, vol. 16(1), pages 3-16, February.
    14. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    15. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    16. Ion Necoara & Yurii Nesterov & François Glineur, 2017. "Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 227-254, April.
    17. Kashyap, Ravi, 2019. "The perfect marriage and much more: Combining dimension reduction, distance measures and covariance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    18. Sjur Didrik Flåm, 2020. "Emergence of price-taking Behavior," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(3), pages 847-870, October.
    19. Jean-Jacques Forneron, 2023. "Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models," Papers 2301.07196, arXiv.org, revised Feb 2023.
    20. Fu, Sheng & Zhang, Sanguo & Liu, Yufeng, 2018. "Adaptively weighted large-margin angle-based classifiers," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 282-299.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:79:y:2021:i:2:d:10.1007_s10589-021-00271-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.