IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2851.html
   My bibliography  Save this paper

Random gradient-free minimization of convex functions

Author

Listed:
  • Yurii NESTEROV
  • Vladimir SPOKOINY

Abstract

No abstract is available for this item.

Suggested Citation

  • Yurii NESTEROV & Vladimir SPOKOINY, 2017. "Random gradient-free minimization of convex functions," LIDAM Reprints CORE 2851, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2851
    Note: In : Foundations of Computational Mathematics, 17, 527-566, 2017
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    2. Marco Boresta & Tommaso Colombo & Alberto Santis & Stefano Lucidi, 2022. "A Mixed Finite Differences Scheme for Gradient Approximation," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 1-24, July.
    3. Yijie Peng & Li Xiao & Bernd Heidergott & L. Jeff Hong & Henry Lam, 2022. "A New Likelihood Ratio Method for Training Artificial Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 638-655, January.
    4. Jun Xie & Chi Cao, 2017. "Non-Convex Economic Dispatch of a Virtual Power Plant via a Distributed Randomized Gradient-Free Algorithm," Energies, MDPI, vol. 10(7), pages 1-12, July.
    5. Ghadimi, Saeed & Powell, Warren B., 2024. "Stochastic search for a parametric cost function approximation: Energy storage with rolling forecasts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 641-652.
    6. Katya Scheinberg, 2022. "Finite Difference Gradient Approximation: To Randomize or Not?," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2384-2388, September.
    7. David Kozak & Stephen Becker & Alireza Doostan & Luis Tenorio, 2021. "A stochastic subspace approach to gradient-free optimization in high dimensions," Computational Optimization and Applications, Springer, vol. 79(2), pages 339-368, June.
    8. Ghaderi, Susan & Ahookhosh, Masoud & Arany, Adam & Skupin, Alexander & Patrinos, Panagiotis & Moreau, Yves, 2024. "Smoothing unadjusted Langevin algorithms for nonsmooth composite potential functions," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    9. Dvurechensky, Pavel & Gorbunov, Eduard & Gasnikov, Alexander, 2021. "An accelerated directional derivative method for smooth stochastic convex optimization," European Journal of Operational Research, Elsevier, vol. 290(2), pages 601-621.
    10. Jun Xie & Qingyun Yu & Chi Cao, 2018. "A Distributed Randomized Gradient-Free Algorithm for the Non-Convex Economic Dispatch Problem," Energies, MDPI, vol. 11(1), pages 1-15, January.
    11. Nikita Kornilov & Alexander Gasnikov & Pavel Dvurechensky & Darina Dvinskikh, 2023. "Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact," Computational Management Science, Springer, vol. 20(1), pages 1-43, December.
    12. Jean-Jacques Forneron, 2023. "Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models," Papers 2301.07196, arXiv.org, revised Feb 2023.
    13. V. Kungurtsev & F. Rinaldi, 2021. "A zeroth order method for stochastic weakly convex optimization," Computational Optimization and Applications, Springer, vol. 80(3), pages 731-753, December.
    14. Geovani Nunes Grapiglia, 2023. "Quadratic regularization methods with finite-difference gradient approximations," Computational Optimization and Applications, Springer, vol. 85(3), pages 683-703, July.
    15. Michael R. Metel & Akiko Takeda, 2022. "Perturbed Iterate SGD for Lipschitz Continuous Loss Functions," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 504-547, November.
    16. Jingxu Xu & Zeyu Zheng, 2023. "Gradient-Based Simulation Optimization Algorithms via Multi-Resolution System Approximations," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 633-651, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.