IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v253y2016i2p418-427.html
   My bibliography  Save this article

Value of information in portfolio selection, with a Taiwan stock market application illustration

Author

Listed:
  • Kao, Chiang
  • Steuer, Ralph E.

Abstract

Despite many proposed alternatives, the predominant model in portfolio selection is still mean–variance. However, the main weakness of the mean–variance model is in the specification of the expected returns of the individual securities involved. If this process is not accurate, the allocations of capital to the different securities will in almost all certainty be incorrect. If, however, this process can be made accurate, then correct allocations can be made, and the additional expected return following from this is the value of information. This paper thus proposes a methodology to calculate the value of information. A related idea of a level of disappointment is also shown. How value of information calculations can be important in helping a mutual fund settle on how much to set aside for research is discussed in reference to a Taiwan Stock Exchange illustrative application in which the value of information appears to be substantial. Heavy use is made of parametric quadratic programming to keep computation times down for the methodology.

Suggested Citation

  • Kao, Chiang & Steuer, Ralph E., 2016. "Value of information in portfolio selection, with a Taiwan stock market application illustration," European Journal of Operational Research, Elsevier, vol. 253(2), pages 418-427.
  • Handle: RePEc:eee:ejores:v:253:y:2016:i:2:p:418-427
    DOI: 10.1016/j.ejor.2016.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716300315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
    2. Clara Calvo & Carlos Ivorra & Vicente Liern & Blanca Pérez-Gladish, 2021. "Grading Investment Diversification Options in Presence of Non-Historical Financial Information," Mathematics, MDPI, vol. 9(6), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:253:y:2016:i:2:p:418-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.